Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Theorie ermöglicht Blick ins Innere der Erde

21.07.2014

Unter extremem Druck kann es zu Phasenübergängen kommen, die sich mit herkömmlichen Methoden nicht berechnen lassen. Durch eine neue Theorie, entwickelt an der TU Wien und der Universität Wien, wird eine genauere Analyse seismischer Wellen und ein Einblick in die innersten Eigenschaften unserer Erde möglich.

Ins Innere unseres Planeten zu gelangen ist eine schwierige Aufgabe – das hat schon Jules Verne in seinem berühmten Roman "Die Reise zum Mittelpunkt der Erde" beschrieben. Auch heute noch können wir nur indirekt durch seismische Messungen Information über Struktur und Zusammensetzung der Erde gewinnen.

Um solche Daten allerdings richtig interpretieren zu können, braucht man eine exakte Beschreibung der Materialien im Erdinneren. Einem Team von Wissenschaftlern der TU Wien und der Universität Wien unter Führung des theoretischen Physikers Andreas Tröster (TU Wien) gelang es nun mit Hilfe quantenphysikalischer Berechnungen, bestimmte Phasenübergänge, wie sie bei hohem Druck im Erdinneren stattfinden, mit bisher noch nie dagewesener Präzision zu beschreiben. Die neue Theorie wurde nun im Fachjournal „Physical Review X“ publiziert.

Hochdruckphasenübergänge geben Einblick ins Erdinnere

Das Innere unserer Erde ist bis heute noch nicht vollständig erforscht. Bekannt ist, dass rund 60 Prozent der Erde aus siliziumhaltigen Materialien – sogenannten Perowskit-Strukturen – bestehen, der mächtige untere Mantel sogar zu 93 Prozent. Diese Mineralien sind in der Erde einem enorm großen Druck ausgesetzt.

Der im Zentrum herrschende Druck von 360 Giga-Pascal entspricht einem Gewicht von zehn Millionen Elefanten auf einer Fläche von einem Quadratmeter. "Dadurch kann es unter bestimmten Bedingungen zu Hochdruckphasenübergängen kommen, bei denen sich die innere Struktur der Mineralien ändert" erklärt Trösters einstiger Doktorvater, der Materialphysiker Wilfried Schranz von der Arbeitsgruppe "Physik Funktioneller Materialien" der Universität Wien.

Die Struktur des Erdkörpers wird untersucht, indem man seismische Wellen analysiert. Ihr Ausbreitungsverhalten wird durch die elastischen Eigenschaften der Materialien im Erdinneren festgelegt. "Diese elastischen Eigenschaften können sich in der Nähe von strukturellen Phasenübergängen als Funktion von Druck und Temperatur stark ändern", erklärt Schranz.

„Bis heute gibt es aber leider keinen veröffentlichten experimentellen Datensatz zu den elastischen Eigenschaften der Materialien im Erdmantel bei realistischen Druck- und Temperaturbedingungen, geschweige denn von Materialien im tiefen Erdinneren." Man ist daher auf Berechnungen angewiesen.

Eine Erweiterung der Landau-Theorie

„Quantenmechanische ab-initio-Computersimulationen erlauben zwar die Berechnung von elastischen Eigenschaften von Materialien bis zu extremen Drücken, die Einbeziehung von Temperatureffekten ist dabei aber nur beschränkt möglich“, erklärt der theoretische Chemiker Peter Blaha. Phasenübergänge in Kristallen werden seit vielen Jahren mit Hilfe der „Landau-Theorie“ beschrieben. Sie erweist sich bei Drücken, mit denen wir normalerweise zu tun haben, als äußerst nützlich.

„Bei hohem Druck kommt es aber zwangsläufig zu nichtlinearen Effekten, die man in der bisherigen Landau-Theorie vernachlässigen muss“, sagt Andreas Tröster. Das bedeutet zwar mathematisch eine enorme Vereinfachung, kann aber rasch zu Fehlern von sage und schreibe 100 Prozent führen. Einige Vorhersagen von Materialeigenschaften bei hohem Druck, die mit den bisher verwendeten Methoden berechneten wurden, müssen daher vermutlich auch einer gründlichen Revision unterzogen werden.

Lange wurde daher nach einer mathematisch konsistenten Erweiterung der Landau-Theorie auf Hochdruckphasenübergänge gesucht. „Uns gelang das nun mit Hilfe von Gruppentheorie, nichtlinearer Elastizitätstheorie und quantenmechanischen Dichtefunktionalberechnungen am Computer“, erklärt Tröster: „In dieser lange gesuchten Erweiterung der Landau-Theorie wird erstmals auch der bei hohen Drücken entscheidende nichtlineare Beitrag zur elastische Energie eines Kristalls mathematisch konsistent berücksichtigt.“

Um die neue Theorie zu testen, wandte man sie auf Strontiumtitanat an, einen Perowskit, dessen Eigenschaften bereits gut bekannt sind. „Anhand dieses Schlüssel-Materials konnten wir demonstrieren, dass unsere Theorie exzellent mit den gemessenen Daten übereinstimmt“, sagt Wilfried Schranz. Das zeigt, welch hohe Qualität bei der Beschreibung von Hochdruckphasenübergängen mit Hilfe von quantenmechanischen Dichtefunktionalberechnungen erreicht werden kann.

„In Zukunft werden wir durch ein enges Zusammenspiel von experimenteller Arbeit, Computersimulationen und analytischer Theorie die gewonnenen Daten in große geophysikalische bzw. seismologische Modelle integrieren können. Damit werden wir zu einem immer besseren Verständnis des Aufbaus und der Eigenschaften unserer Erde gelangen", freut sich Andreas Tröster.

Rückfragehinweis:
Dr. Andreas Tröster
Institut für Theoretische Physik
Technische Universität Wien
Wiedner Hauptstraße 8-10, 1040 Wien
andreas.troester@tuwien.ac.at

Prof. Wilfried Schranz
Fakultät für Physik
Universität Wien
Boltzmanngasse 5, A-1090 Wien
T: +43-1-4277-72771
wilfried.schranz@univie.ac.at

Weitere Informationen:

Publikation in "Physical Review X":
Andreas Tröster, Wilfried Schranz, Ferenc Karsai and Peter Blaha: "Fully consistent finite-strain Landau theory for high-pressure phase transitions", Phys. Rev. X (2014).
http://journals.aps.org/prx/abstract/10.1103/PhysRevX.4.031010

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur
22.06.2017 | Fraunhofer-Gesellschaft

nachricht Ursuppe in Dosen
21.06.2017 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften