Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Theorie ermöglicht Blick ins Innere der Erde

21.07.2014

Unter extremem Druck kann es zu Phasenübergängen kommen, die sich mit herkömmlichen Methoden nicht berechnen lassen. Durch eine neue Theorie, entwickelt an der TU Wien und der Universität Wien, wird eine genauere Analyse seismischer Wellen und ein Einblick in die innersten Eigenschaften unserer Erde möglich.

Ins Innere unseres Planeten zu gelangen ist eine schwierige Aufgabe – das hat schon Jules Verne in seinem berühmten Roman "Die Reise zum Mittelpunkt der Erde" beschrieben. Auch heute noch können wir nur indirekt durch seismische Messungen Information über Struktur und Zusammensetzung der Erde gewinnen.

Um solche Daten allerdings richtig interpretieren zu können, braucht man eine exakte Beschreibung der Materialien im Erdinneren. Einem Team von Wissenschaftlern der TU Wien und der Universität Wien unter Führung des theoretischen Physikers Andreas Tröster (TU Wien) gelang es nun mit Hilfe quantenphysikalischer Berechnungen, bestimmte Phasenübergänge, wie sie bei hohem Druck im Erdinneren stattfinden, mit bisher noch nie dagewesener Präzision zu beschreiben. Die neue Theorie wurde nun im Fachjournal „Physical Review X“ publiziert.

Hochdruckphasenübergänge geben Einblick ins Erdinnere

Das Innere unserer Erde ist bis heute noch nicht vollständig erforscht. Bekannt ist, dass rund 60 Prozent der Erde aus siliziumhaltigen Materialien – sogenannten Perowskit-Strukturen – bestehen, der mächtige untere Mantel sogar zu 93 Prozent. Diese Mineralien sind in der Erde einem enorm großen Druck ausgesetzt.

Der im Zentrum herrschende Druck von 360 Giga-Pascal entspricht einem Gewicht von zehn Millionen Elefanten auf einer Fläche von einem Quadratmeter. "Dadurch kann es unter bestimmten Bedingungen zu Hochdruckphasenübergängen kommen, bei denen sich die innere Struktur der Mineralien ändert" erklärt Trösters einstiger Doktorvater, der Materialphysiker Wilfried Schranz von der Arbeitsgruppe "Physik Funktioneller Materialien" der Universität Wien.

Die Struktur des Erdkörpers wird untersucht, indem man seismische Wellen analysiert. Ihr Ausbreitungsverhalten wird durch die elastischen Eigenschaften der Materialien im Erdinneren festgelegt. "Diese elastischen Eigenschaften können sich in der Nähe von strukturellen Phasenübergängen als Funktion von Druck und Temperatur stark ändern", erklärt Schranz.

„Bis heute gibt es aber leider keinen veröffentlichten experimentellen Datensatz zu den elastischen Eigenschaften der Materialien im Erdmantel bei realistischen Druck- und Temperaturbedingungen, geschweige denn von Materialien im tiefen Erdinneren." Man ist daher auf Berechnungen angewiesen.

Eine Erweiterung der Landau-Theorie

„Quantenmechanische ab-initio-Computersimulationen erlauben zwar die Berechnung von elastischen Eigenschaften von Materialien bis zu extremen Drücken, die Einbeziehung von Temperatureffekten ist dabei aber nur beschränkt möglich“, erklärt der theoretische Chemiker Peter Blaha. Phasenübergänge in Kristallen werden seit vielen Jahren mit Hilfe der „Landau-Theorie“ beschrieben. Sie erweist sich bei Drücken, mit denen wir normalerweise zu tun haben, als äußerst nützlich.

„Bei hohem Druck kommt es aber zwangsläufig zu nichtlinearen Effekten, die man in der bisherigen Landau-Theorie vernachlässigen muss“, sagt Andreas Tröster. Das bedeutet zwar mathematisch eine enorme Vereinfachung, kann aber rasch zu Fehlern von sage und schreibe 100 Prozent führen. Einige Vorhersagen von Materialeigenschaften bei hohem Druck, die mit den bisher verwendeten Methoden berechneten wurden, müssen daher vermutlich auch einer gründlichen Revision unterzogen werden.

Lange wurde daher nach einer mathematisch konsistenten Erweiterung der Landau-Theorie auf Hochdruckphasenübergänge gesucht. „Uns gelang das nun mit Hilfe von Gruppentheorie, nichtlinearer Elastizitätstheorie und quantenmechanischen Dichtefunktionalberechnungen am Computer“, erklärt Tröster: „In dieser lange gesuchten Erweiterung der Landau-Theorie wird erstmals auch der bei hohen Drücken entscheidende nichtlineare Beitrag zur elastische Energie eines Kristalls mathematisch konsistent berücksichtigt.“

Um die neue Theorie zu testen, wandte man sie auf Strontiumtitanat an, einen Perowskit, dessen Eigenschaften bereits gut bekannt sind. „Anhand dieses Schlüssel-Materials konnten wir demonstrieren, dass unsere Theorie exzellent mit den gemessenen Daten übereinstimmt“, sagt Wilfried Schranz. Das zeigt, welch hohe Qualität bei der Beschreibung von Hochdruckphasenübergängen mit Hilfe von quantenmechanischen Dichtefunktionalberechnungen erreicht werden kann.

„In Zukunft werden wir durch ein enges Zusammenspiel von experimenteller Arbeit, Computersimulationen und analytischer Theorie die gewonnenen Daten in große geophysikalische bzw. seismologische Modelle integrieren können. Damit werden wir zu einem immer besseren Verständnis des Aufbaus und der Eigenschaften unserer Erde gelangen", freut sich Andreas Tröster.

Rückfragehinweis:
Dr. Andreas Tröster
Institut für Theoretische Physik
Technische Universität Wien
Wiedner Hauptstraße 8-10, 1040 Wien
andreas.troester@tuwien.ac.at

Prof. Wilfried Schranz
Fakultät für Physik
Universität Wien
Boltzmanngasse 5, A-1090 Wien
T: +43-1-4277-72771
wilfried.schranz@univie.ac.at

Weitere Informationen:

Publikation in "Physical Review X":
Andreas Tröster, Wilfried Schranz, Ferenc Karsai and Peter Blaha: "Fully consistent finite-strain Landau theory for high-pressure phase transitions", Phys. Rev. X (2014).
http://journals.aps.org/prx/abstract/10.1103/PhysRevX.4.031010

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Nährstoffhaushalt einer neuentdeckten “Todeszone” im Indischen Ozean auf der Kippe
06.12.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Wichtiger Prozess für Wolkenbildung aus Gasen entschlüsselt
05.12.2016 | Leibniz-Institut für Troposphärenforschung e. V.

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weiterbildung zu statistischen Methoden in der Versuchsplanung und -auswertung

06.12.2016 | Seminare Workshops

Bund fördert Entwicklung sicherer Schnellladetechnik für Hochleistungsbatterien mit 2,5 Millionen

06.12.2016 | Förderungen Preise

Innovationen für eine nachhaltige Forstwirtschaft

06.12.2016 | Agrar- Forstwissenschaften