Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Theorie zur Entstehung der ältesten Kontinente

08.03.2012
Geologen der Universitäten Bonn und Köln legen in der April-Ausgabe der Zeitschrift „Geology“ wissenschaftliche Ergebnisse vor, aus denen sich ein neues Bild der frühesten Phase der Kontinentbildung ergibt.
Bislang ging die Forschung davon aus, dass die ersten Kontinentalgesteine vor rund vier Milliarden Jahren entstanden, indem ozeanische Urkruste durch plattentektonische Bewegungen im Erdmantel versank und in großen Tiefen schmolz. Untersuchungen der Wissenschaftler legen nun nahe, dass die Bildung der ersten Kontinentfragmente in viel geringeren Tiefen erfolgte und die Ausgangsgesteine wahrscheinlich nie versenkt worden sind.

Der Aufbau der Erde lässt sich mit einer Apfelsine vergleichen: Die Erdkruste ist die äußerste Schale, die auf dem schwereren Erdmantel schwimmt. Die 30 bis 40 Kilometer dicke Kruste der Kontinente bildet das Festland. Sie ist deutlich leichter als die dünnere ozeanische Kruste und ragt wegen ihrer geringen Dichte aus dem Erdmantel wie ein Eisberg aus dem Meer.
„Nach der gängigen Theorie hat sich die erste kontinentale Kruste dadurch gebildet, dass ozeanische Kruste in Plattenkollisionszonen tief in den Erdmantel abtauchte und in rund 100 Kilometern Tiefe teilweise aufschmolz. Diese Schmelzen sollen dann zur Erdoberfläche aufgestiegen sein und die ersten Kontinente gebildet haben“, berichtet Privatdozent Dr. Thorsten Nagel vom Steinmann-Institut für Geowissenschaften der Universität Bonn, der Erstautor der Studie. Als Beleg für dieses Szenario galten bislang die mit rund 3,8 Milliarden Jahren ältesten auf der Erde erhaltenen Kontinentgesteine, die in Westgrönland gefunden wurden.

Spurenelemente führten auf die Spur

Die kontinentale Kruste entspricht in ihrer Zusammensetzung einer Schmelze, die entsteht, wenn 10 bis 30 Prozent der ozeanischen Kruste aufgeschmolzen sind. Die Konzentrationen der chemischen Hauptbestandteile in dem wieder erstarrten Gestein geben leider kaum Aufschluss über die Bildungstiefe der Schmelze. „Um die zu bestimmen, müsste man wissen, aus welchen Mineralen die in der Tiefe zurückgebliebenen 70 bis 90 Prozent der ozeanische Kruste bestanden“, erklärt Prof. Dr. Carsten Münker vom Institut für Geologie und Mineralogie der Universität zu Köln. Die Bonn-Kölner Forscher untersuchten nun in den grönländischen Gesteinen verschiedene in äußerst geringen Konzentrationen auftretende Elemente, sogenannte Spurenelemente. „Die Spurenelemente stellen für Geologen ein Fenster zu der Quelle kontinentaler Kruste dar“, sagt Prof. Münker. „Mit ihrer Hilfe kann man die Minerale in dem Restgestein identifizieren, das in der Tiefe von der Schmelze zurückgelassen wurde.“

Bevor die Gesteinsschmelze das Muttergestein verließ, herrschte zwischen ihr und den zurückbleibenden festen Mineralen ein reger Austausch von Spurenelementen. „Verschiedene Minerale teilen sich mit der Schmelze jedes Spurenelement auf charakteristische Weise. Das heißt, der Gehalt von Spurenelementen in der Schmelze stellt einen Fingerabdruck des zurückgebliebenen Restgesteins dar”, erläutert Dr. Elis Hoffmann aus Bonn, Mitautor der Studie. Der Gehalt der ältesten Kontinentalgesteine an Spurenelementen erlaubt es somit den Geoforschern, mögliche Restgesteine hinsichtlich ihrer Minerale zu rekonstruieren und auf diese Weise zu bestimmen, in welchen Tiefen die kontinentale Kruste ihren Ursprung hat.

Die Ozeankruste muss nicht in große Tiefen abtauchen

Die Wissenschaftler berechneten am Computer für verschiedene Tiefen und Temperaturen die Zusammensetzungen von Restgesteinen und Schmelzen, die bei der teilweisen Aufschmelzung ozeanischer Kruste entstehen würden. Die für die Schmelze errechneten Werte verglichen sie dann mit den tatsächlichen Spurenelement-Gehalten in den ältesten kontinentalen Gesteinen. „Unsere Ergebnisse zeigen ein überraschendes Bild“, berichtet Dr. Nagel. „Die ozeanische Kruste muss gar nicht in Tiefen von 100 Kilometer abtauchen, um Schmelzen zu bilden, aus der die Gesteine der ersten Kontinente entstanden.“ Nach den Berechnungen ist eine Tiefe von etwa 30 bis 40 Kilometern viel wahrscheinlicher.

Ozean-Urkruste könnte die Kontinente direkt „ausgeschwitzt“ haben

Solche Mächtigkeiten kann die ozeanische Kruste im Archaikum durchaus gehabt haben. Die allmählich abkühlende Erde war vor rund vier Milliarden Jahren noch deutlich heißer als heute. In Verbindung mit anderen geologischen Prozessen wie Vulkanismus, Gebirgsbildung oder Wasserzufuhr könnte die ozeanische Urkruste die Kontinente direkt „ausgeschwitzt“ haben. „Wir halten es für unwahrscheinlich, dass sich unsere Kontinente in Subduktionszonen gebildet haben. Ob es solche Versenkungszonen tektonischer Platten auf der frühen Erde überhaupt gab, steht somit wieder zur Debatte“, führt der Bonner Geologe aus.

Publikation: Generation of Eoarchean tonalite-trondhjemite-granodiorite series from thickened mafic arc crust, Geology, DOI: 10.1130/G32729.1

Kontakt:

Privatdozent Dr. Thorsten Nagel/Dr. J. Elis Hoffmann
Steinmann-Institut für Geowissenschaften
Universität Bonn
Tel. 0228/732760
E-Mail: tnagel@uni-bonn.de

Prof. Dr. Carsten Münker
Institut für Geologie und Mineralogie
Universität zu Köln
Tel. 0221/4703198
E-Mail: c.muenker@uni-koeln.de

Johannes Seiler | idw
Weitere Informationen:
http://www.uni-bonn.de
http://www3.uni-bonn.de/Pressemitteilungen/060-2012

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Unterschiedliche Erwärmung von Arktis und Antarktis: Forscher sieht Höhenunterschied als Ursache
18.05.2017 | Universität Leipzig

nachricht Wie wirkt sich der Klimawandel auf die Bewohner der Arktis aus?
18.05.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium 2017: Internet of Production für agile Unternehmen

23.05.2017 | Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen

23.05.2017 | Biowissenschaften Chemie

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungsnachrichten

CAST-Projekt setzt Dunkler Materie neue Grenzen

23.05.2017 | Physik Astronomie