Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Theorie zur Entstehung der ältesten Kontinente

08.03.2012
Geologen der Universitäten Bonn und Köln legen in der April-Ausgabe der Zeitschrift „Geology“ wissenschaftliche Ergebnisse vor, aus denen sich ein neues Bild der frühesten Phase der Kontinentbildung ergibt.
Bislang ging die Forschung davon aus, dass die ersten Kontinentalgesteine vor rund vier Milliarden Jahren entstanden, indem ozeanische Urkruste durch plattentektonische Bewegungen im Erdmantel versank und in großen Tiefen schmolz. Untersuchungen der Wissenschaftler legen nun nahe, dass die Bildung der ersten Kontinentfragmente in viel geringeren Tiefen erfolgte und die Ausgangsgesteine wahrscheinlich nie versenkt worden sind.

Der Aufbau der Erde lässt sich mit einer Apfelsine vergleichen: Die Erdkruste ist die äußerste Schale, die auf dem schwereren Erdmantel schwimmt. Die 30 bis 40 Kilometer dicke Kruste der Kontinente bildet das Festland. Sie ist deutlich leichter als die dünnere ozeanische Kruste und ragt wegen ihrer geringen Dichte aus dem Erdmantel wie ein Eisberg aus dem Meer.
„Nach der gängigen Theorie hat sich die erste kontinentale Kruste dadurch gebildet, dass ozeanische Kruste in Plattenkollisionszonen tief in den Erdmantel abtauchte und in rund 100 Kilometern Tiefe teilweise aufschmolz. Diese Schmelzen sollen dann zur Erdoberfläche aufgestiegen sein und die ersten Kontinente gebildet haben“, berichtet Privatdozent Dr. Thorsten Nagel vom Steinmann-Institut für Geowissenschaften der Universität Bonn, der Erstautor der Studie. Als Beleg für dieses Szenario galten bislang die mit rund 3,8 Milliarden Jahren ältesten auf der Erde erhaltenen Kontinentgesteine, die in Westgrönland gefunden wurden.

Spurenelemente führten auf die Spur

Die kontinentale Kruste entspricht in ihrer Zusammensetzung einer Schmelze, die entsteht, wenn 10 bis 30 Prozent der ozeanischen Kruste aufgeschmolzen sind. Die Konzentrationen der chemischen Hauptbestandteile in dem wieder erstarrten Gestein geben leider kaum Aufschluss über die Bildungstiefe der Schmelze. „Um die zu bestimmen, müsste man wissen, aus welchen Mineralen die in der Tiefe zurückgebliebenen 70 bis 90 Prozent der ozeanische Kruste bestanden“, erklärt Prof. Dr. Carsten Münker vom Institut für Geologie und Mineralogie der Universität zu Köln. Die Bonn-Kölner Forscher untersuchten nun in den grönländischen Gesteinen verschiedene in äußerst geringen Konzentrationen auftretende Elemente, sogenannte Spurenelemente. „Die Spurenelemente stellen für Geologen ein Fenster zu der Quelle kontinentaler Kruste dar“, sagt Prof. Münker. „Mit ihrer Hilfe kann man die Minerale in dem Restgestein identifizieren, das in der Tiefe von der Schmelze zurückgelassen wurde.“

Bevor die Gesteinsschmelze das Muttergestein verließ, herrschte zwischen ihr und den zurückbleibenden festen Mineralen ein reger Austausch von Spurenelementen. „Verschiedene Minerale teilen sich mit der Schmelze jedes Spurenelement auf charakteristische Weise. Das heißt, der Gehalt von Spurenelementen in der Schmelze stellt einen Fingerabdruck des zurückgebliebenen Restgesteins dar”, erläutert Dr. Elis Hoffmann aus Bonn, Mitautor der Studie. Der Gehalt der ältesten Kontinentalgesteine an Spurenelementen erlaubt es somit den Geoforschern, mögliche Restgesteine hinsichtlich ihrer Minerale zu rekonstruieren und auf diese Weise zu bestimmen, in welchen Tiefen die kontinentale Kruste ihren Ursprung hat.

Die Ozeankruste muss nicht in große Tiefen abtauchen

Die Wissenschaftler berechneten am Computer für verschiedene Tiefen und Temperaturen die Zusammensetzungen von Restgesteinen und Schmelzen, die bei der teilweisen Aufschmelzung ozeanischer Kruste entstehen würden. Die für die Schmelze errechneten Werte verglichen sie dann mit den tatsächlichen Spurenelement-Gehalten in den ältesten kontinentalen Gesteinen. „Unsere Ergebnisse zeigen ein überraschendes Bild“, berichtet Dr. Nagel. „Die ozeanische Kruste muss gar nicht in Tiefen von 100 Kilometer abtauchen, um Schmelzen zu bilden, aus der die Gesteine der ersten Kontinente entstanden.“ Nach den Berechnungen ist eine Tiefe von etwa 30 bis 40 Kilometern viel wahrscheinlicher.

Ozean-Urkruste könnte die Kontinente direkt „ausgeschwitzt“ haben

Solche Mächtigkeiten kann die ozeanische Kruste im Archaikum durchaus gehabt haben. Die allmählich abkühlende Erde war vor rund vier Milliarden Jahren noch deutlich heißer als heute. In Verbindung mit anderen geologischen Prozessen wie Vulkanismus, Gebirgsbildung oder Wasserzufuhr könnte die ozeanische Urkruste die Kontinente direkt „ausgeschwitzt“ haben. „Wir halten es für unwahrscheinlich, dass sich unsere Kontinente in Subduktionszonen gebildet haben. Ob es solche Versenkungszonen tektonischer Platten auf der frühen Erde überhaupt gab, steht somit wieder zur Debatte“, führt der Bonner Geologe aus.

Publikation: Generation of Eoarchean tonalite-trondhjemite-granodiorite series from thickened mafic arc crust, Geology, DOI: 10.1130/G32729.1

Kontakt:

Privatdozent Dr. Thorsten Nagel/Dr. J. Elis Hoffmann
Steinmann-Institut für Geowissenschaften
Universität Bonn
Tel. 0228/732760
E-Mail: tnagel@uni-bonn.de

Prof. Dr. Carsten Münker
Institut für Geologie und Mineralogie
Universität zu Köln
Tel. 0221/4703198
E-Mail: c.muenker@uni-koeln.de

Johannes Seiler | idw
Weitere Informationen:
http://www.uni-bonn.de
http://www3.uni-bonn.de/Pressemitteilungen/060-2012

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Wie der Nordatlantik zum Wärmepirat wurde
23.01.2017 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

nachricht Neues Forschungsspecial zu Meeren, Ozeanen und Gewässern
18.01.2017 | Hochschule für Angewandte Wissenschaften Hamburg

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Forscher spinnen künstliche Seide aus Kuhmolke

Ein schwedisch-deutsches Forscherteam hat bei DESY einen zentralen Prozess für die künstliche Produktion von Seide entschlüsselt. Mit Hilfe von intensivem Röntgenlicht konnten die Wissenschaftler beobachten, wie sich kleine Proteinstückchen – sogenannte Fibrillen – zu einem Faden verhaken. Dabei zeigte sich, dass die längsten Proteinfibrillen überraschenderweise als Ausgangsmaterial schlechter geeignet sind als Proteinfibrillen minderer Qualität. Das Team um Dr. Christofer Lendel und Dr. Fredrik Lundell von der Königlich-Technischen Hochschule (KTH) Stockholm stellt seine Ergebnisse in den „Proceedings“ der US-Akademie der Wissenschaften vor.

Seide ist ein begehrtes Material mit vielen erstaunlichen Eigenschaften: Sie ist ultraleicht, belastbarer als manches Metall und kann extrem elastisch sein....

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Neuer Algorithmus in der Künstlichen Intelligenz

24.01.2017 | Veranstaltungen

Gehirn und Immunsystem beim Schlaganfall – Neueste Erkenntnisse zur Interaktion zweier Supersysteme

24.01.2017 | Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Interview mit Harald Holzer, Geschäftsführer der vitaliberty GmbH

24.01.2017 | Unternehmensmeldung

MAIUS-1 – erste Experimente mit ultrakalten Atomen im All

24.01.2017 | Physik Astronomie

European XFEL: Forscher können erste Vorschläge für Experimente einreichen

24.01.2017 | Physik Astronomie