Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Theorie zur Entstehung der ältesten Kontinente

08.03.2012
Geologen der Universitäten Bonn und Köln legen in der April-Ausgabe der Zeitschrift „Geology“ wissenschaftliche Ergebnisse vor, aus denen sich ein neues Bild der frühesten Phase der Kontinentbildung ergibt.
Bislang ging die Forschung davon aus, dass die ersten Kontinentalgesteine vor rund vier Milliarden Jahren entstanden, indem ozeanische Urkruste durch plattentektonische Bewegungen im Erdmantel versank und in großen Tiefen schmolz. Untersuchungen der Wissenschaftler legen nun nahe, dass die Bildung der ersten Kontinentfragmente in viel geringeren Tiefen erfolgte und die Ausgangsgesteine wahrscheinlich nie versenkt worden sind.

Der Aufbau der Erde lässt sich mit einer Apfelsine vergleichen: Die Erdkruste ist die äußerste Schale, die auf dem schwereren Erdmantel schwimmt. Die 30 bis 40 Kilometer dicke Kruste der Kontinente bildet das Festland. Sie ist deutlich leichter als die dünnere ozeanische Kruste und ragt wegen ihrer geringen Dichte aus dem Erdmantel wie ein Eisberg aus dem Meer.
„Nach der gängigen Theorie hat sich die erste kontinentale Kruste dadurch gebildet, dass ozeanische Kruste in Plattenkollisionszonen tief in den Erdmantel abtauchte und in rund 100 Kilometern Tiefe teilweise aufschmolz. Diese Schmelzen sollen dann zur Erdoberfläche aufgestiegen sein und die ersten Kontinente gebildet haben“, berichtet Privatdozent Dr. Thorsten Nagel vom Steinmann-Institut für Geowissenschaften der Universität Bonn, der Erstautor der Studie. Als Beleg für dieses Szenario galten bislang die mit rund 3,8 Milliarden Jahren ältesten auf der Erde erhaltenen Kontinentgesteine, die in Westgrönland gefunden wurden.

Spurenelemente führten auf die Spur

Die kontinentale Kruste entspricht in ihrer Zusammensetzung einer Schmelze, die entsteht, wenn 10 bis 30 Prozent der ozeanischen Kruste aufgeschmolzen sind. Die Konzentrationen der chemischen Hauptbestandteile in dem wieder erstarrten Gestein geben leider kaum Aufschluss über die Bildungstiefe der Schmelze. „Um die zu bestimmen, müsste man wissen, aus welchen Mineralen die in der Tiefe zurückgebliebenen 70 bis 90 Prozent der ozeanische Kruste bestanden“, erklärt Prof. Dr. Carsten Münker vom Institut für Geologie und Mineralogie der Universität zu Köln. Die Bonn-Kölner Forscher untersuchten nun in den grönländischen Gesteinen verschiedene in äußerst geringen Konzentrationen auftretende Elemente, sogenannte Spurenelemente. „Die Spurenelemente stellen für Geologen ein Fenster zu der Quelle kontinentaler Kruste dar“, sagt Prof. Münker. „Mit ihrer Hilfe kann man die Minerale in dem Restgestein identifizieren, das in der Tiefe von der Schmelze zurückgelassen wurde.“

Bevor die Gesteinsschmelze das Muttergestein verließ, herrschte zwischen ihr und den zurückbleibenden festen Mineralen ein reger Austausch von Spurenelementen. „Verschiedene Minerale teilen sich mit der Schmelze jedes Spurenelement auf charakteristische Weise. Das heißt, der Gehalt von Spurenelementen in der Schmelze stellt einen Fingerabdruck des zurückgebliebenen Restgesteins dar”, erläutert Dr. Elis Hoffmann aus Bonn, Mitautor der Studie. Der Gehalt der ältesten Kontinentalgesteine an Spurenelementen erlaubt es somit den Geoforschern, mögliche Restgesteine hinsichtlich ihrer Minerale zu rekonstruieren und auf diese Weise zu bestimmen, in welchen Tiefen die kontinentale Kruste ihren Ursprung hat.

Die Ozeankruste muss nicht in große Tiefen abtauchen

Die Wissenschaftler berechneten am Computer für verschiedene Tiefen und Temperaturen die Zusammensetzungen von Restgesteinen und Schmelzen, die bei der teilweisen Aufschmelzung ozeanischer Kruste entstehen würden. Die für die Schmelze errechneten Werte verglichen sie dann mit den tatsächlichen Spurenelement-Gehalten in den ältesten kontinentalen Gesteinen. „Unsere Ergebnisse zeigen ein überraschendes Bild“, berichtet Dr. Nagel. „Die ozeanische Kruste muss gar nicht in Tiefen von 100 Kilometer abtauchen, um Schmelzen zu bilden, aus der die Gesteine der ersten Kontinente entstanden.“ Nach den Berechnungen ist eine Tiefe von etwa 30 bis 40 Kilometern viel wahrscheinlicher.

Ozean-Urkruste könnte die Kontinente direkt „ausgeschwitzt“ haben

Solche Mächtigkeiten kann die ozeanische Kruste im Archaikum durchaus gehabt haben. Die allmählich abkühlende Erde war vor rund vier Milliarden Jahren noch deutlich heißer als heute. In Verbindung mit anderen geologischen Prozessen wie Vulkanismus, Gebirgsbildung oder Wasserzufuhr könnte die ozeanische Urkruste die Kontinente direkt „ausgeschwitzt“ haben. „Wir halten es für unwahrscheinlich, dass sich unsere Kontinente in Subduktionszonen gebildet haben. Ob es solche Versenkungszonen tektonischer Platten auf der frühen Erde überhaupt gab, steht somit wieder zur Debatte“, führt der Bonner Geologe aus.

Publikation: Generation of Eoarchean tonalite-trondhjemite-granodiorite series from thickened mafic arc crust, Geology, DOI: 10.1130/G32729.1

Kontakt:

Privatdozent Dr. Thorsten Nagel/Dr. J. Elis Hoffmann
Steinmann-Institut für Geowissenschaften
Universität Bonn
Tel. 0228/732760
E-Mail: tnagel@uni-bonn.de

Prof. Dr. Carsten Münker
Institut für Geologie und Mineralogie
Universität zu Köln
Tel. 0221/4703198
E-Mail: c.muenker@uni-koeln.de

Johannes Seiler | idw
Weitere Informationen:
http://www.uni-bonn.de
http://www3.uni-bonn.de/Pressemitteilungen/060-2012

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Stärkere Belege für Abschwächung des Golfstromsystems
12.04.2018 | Potsdam-Institut für Klimafolgenforschung

nachricht Waldbrände in Kanada sorgen für stärkste jemals gemessene Trübung der Stratosphäre über Europa
12.04.2018 | Leibniz-Institut für Troposphärenforschung e. V.

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nachhaltige und innovative Lösungen

19.04.2018 | HANNOVER MESSE

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungsnachrichten

Auf dem Weg zur optischen Kernuhr

19.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics