Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Erkenntnisse zu Bridgmanit, einem Hauptbestandteil unseres Planeten

28.07.2016

Ein internationales Forschungsteam unter der Leitung von Prof. Dr. Leonid Dubrovinsky an der Universität Bayreuth zeigt in einer neuen, in 'Science Advances' veröffentlichten Studie: Eisen hat eine stabilisierende Wirkung auf die Kristallstruktur von Bridgmanit und somit auf den Erdmantel. Ein erstmals im Labor hergestellter Eisen-Bridgmanit liefert einen neuen Erklärungsansatz für die Ausbreitung von Erdbebenwellen.

Kein anderes Mineral kommt in der Erde so häufig vor wie Bridgmanit, ein nach dem U.S.-amerikanischen Physik-Nobelpreisträger Percy Williams Bridgman benannter Silikat-Perowskit, der Eisen und Aluminium enthält.


Strukturmodell des erstmals im Labor synthetisierten Eisen-Bridgmanits (li.). Es wurde mit Röntgen-Synchrothronstrahlen unter den Druck- und Temperaturbedingungen des Erdmantels analysiert (re.).

Grafik: Leyla Ismailova; mit Autorenangabe zur Veröffentlichung frei.

Insgesamt füllt dieses kristalline Material ein Drittel des Volumens unseres Planeten. Wie hoch die innere Stabilität der Erde ist und wie schnell sich tiefe Erdbeben bis zur Oberfläche ausbreiten, hängt daher wesentlich von den physikalischen Eigenschaften dieses Minerals ab. Seine Eigenschaften beeinflussen zudem die geochemischen Prozesse, durch die sich unter der Erdoberfläche wertvolle Mineralienvorkommen bilden.

Trotz seiner Bedeutung für das Leben auf der Erde ist jedoch bisher nur wenig über Bridgmanit bekannt. Hauptsächlich kommt es im Erdmantel vor, wo sehr hohe Drücke und Temperaturen herrschen. Will man herausfinden, welche physikalischen Eigenschaften Bridgmanit in diesen unzugänglichen Tiefen besitzt, muss es im Labor den gleichen extremen Bedingungen ausgesetzt werden. Hier können Röntgenstrahlen, die von Synchrotronstrahlungsquellen erzeugt werden und die Kristallstruktur des Minerals durchdringen, Aufschluss über dessen Eigenschaften und Verhaltensweisen geben.

Internationale Forschungskooperation

Ein internationales Forschungsteam unter der Leitung von Prof. Dr. Leonid Dubrovinsky an der Universität Bayreuth ist bei diesen Forschungsarbeiten jetzt entscheidende Schritte vorangekommen. Forschungspartner waren das Deutsches Elektronen-Synchrotron (DESY) in Hamburg, die European Synchrotron Radiation Facility (ESRF) in Grenoble, das Center for Advanced Radiation Sources an der University of Chicago, die Abteilung für Petrologie an der Universität Moskau sowie das Institut für Mineralogie an der Universität Münster. Im Wissenschaftsmagazin „Science Advances“ stellen die Wissenschaftler ihre neuen Erkenntnisse vor.

Eisen stabilisiert den Erdmantel

Um eine möglichst große Vielfalt an Informationen über Bridgmanit zu erhalten, wurden diverse Proben des Minerals zunächst synthetisiert und mit verschiedensten Techniken analysiert. Die Proben wurden dabei einem Druck von mindestens 45 Gigapascal – dies entspricht dem Druck in einer Tiefe von rund 1350 Kilometern unter der Erdoberfläche – ausgesetzt. Dabei stellte sich heraus: Das in Bridgmanit enthaltene Eisen hat unter diesen extremen Bedingungen, wie sie für den Erdmantel charakteristisch sind, eine stabilisierende Wirkung auf die Kristallstruktur von Bridgmanit.

„Unsere Forschungsarbeiten zeigen damit, dass und weshalb die eisen- und aluminiumhaltigen Silikat-Perowskite im Erdinneren außerordentlich stabil sind“, erklärt Prof. Dubrovinsky. „Diese Minerale tragen offenbar wesentlich dazu bei, dass der gesamte Erdmantel, der sich von rund 670 Kilometern unter der Erdoberfläche bis zu einer Tiefe von 2.700 Kilometern erstreckt, eine außergewöhnliche Stabilität besitzt. Dabei ist zu berücksichtigen, dass der untere Erdmantel sogar zu 80 Prozent aus Bridgmanit besteht.“

Erstmals im Labor synthetisiert: ein Eisen-Bridgmanit –
Neuer Erklärungsansatz für die Ausbreitung von Erdbebenwellen

Darüber hinaus ist es der Forschergruppe erstmals gelungen, einen Bridgmanit zu synthetisieren, der nur Eisen und kein Aluminium enthält. Dieses Mineral hat im Vergleich mit anderen Bridgmaniten eine sehr niedrige Kompressibilität: Das heißt: Selbst bei extrem hohen Drücken wird er nur geringfügig zusammengepresst, so dass sich seine Dichte kaum erhöht.

„Wenn man annimmt, dass dieser im Labor hergestellte Eisen-Bridgmanit in größeren Mengen im Erdmantel tatsächlich vorkommt, hätten wir einen Erklärungsansatz für das ungewöhnliche Phänomen, dass sich manche Erdbebenwellen nicht gleichmäßig entlang von Bridgmanitschichten im Erdinneren ausbreiten“, meint Leyla Ismailova, Doktorandin an der Universität Bayreuth und Hauptautorin der neuen Studie. „Denn infolge der geringen Kompressibilität ist die Schallgeschwindigkeit in Eisen-Bridgmanit um etwa zwei Prozent geringer als in normalem Bridgmanit. Diese Entdeckung ist besonders für die Auswertung seismischer Tomographiedaten interessant, an denen sich die Stärke und Ausbreitung von Erdbebenwellen ablesen lässt“, so Leyla Ismailova.

Bridgmanit – ein flexibles und vielgestaltiges Mineral

Schließlich beobachteten die Wissenschaftler, dass Bridgmanit-Kristalle selbst unter extrem hohen Drücken eine signifikante Anzahl an Defekten in ihrer Struktur aufweisen. Dieser Befund war insofern überraschend, als die Forschung bisher davon ausgegangen war, dass solche Strukturdefekte beim Zusammenpressen der Kristalle und ihrer dadurch zunehmenden Dichte weitgehend verschwinden.

„Dass die Strukturdefekte dennoch erhalten bleiben, ist ein klares Indiz für die hohe Flexibilität von Bridgmanit-Kristallen. Die Forschung zu diesem Hauptbestandteil unseres Planeten ist also noch längst nicht abgeschlossen, sondern hat gerade erst begonnen. In Bayreuth freuen uns deshalb darauf, die enge und gute Zusammenarbeit mit der DESY in Hamburg sowie mit den weiteren Elektronensynchrotron-Anlagen in Grenoble und Chicago fortsetzen zu können“, so Prof. Dubrovinsky.

Forschungsförderung

In Deutschland wurden die Forschungsarbeiten von der Deutschen Forschungsgemeinschaft (DFG) sowie als Projekt der Verbundforschung vom Bundesministerium für Bildung und Forschung (BMBF) gefördert. Projekte der Verbundforschung beziehen Universitäten in die Entwicklung und den Aufbau innovativer Methoden und Instrumente für große Forschungseinrichtungen ein. Dadurch wird es möglich, herausragende Kompetenzen von Hochschulen und außeruniversitären Forschungseinrichtungen zu verknüpfen und durch Synergie-Effekte weiter zu stärken.

Veröffentlichung:

Leyla Ismailova, Elena Bykova, Maxim Bykov, Valerio Cerantola, Catherine McCammon, Tiziana Boffa Ballaran, Andrei Bobrov, Ryosuke Sinmyo, Natalia Dubrovinskaia, Konstantin Glazyrin, Hanns-Peter Liermann, Ilya Kupenko, Michael Hanfland, Clemens Prescher, Vitali Prakapenka, Volodymyr Svitlyk, Leonid Dubrovinsky,
Stability of Fe,Al-bearing bridgmanite in the lower mantle and synthesis of pure Fe-bridgmanite,
Science Advances, 15 Jul 2016; Vol. 2, no. 7, e1600427,
DOI: 10.1126/sciadv.1600427

Kontakte:

Prof. Dr. Leonid Dubrovinsky
Bayerisches Geoinstitut (BGI)
Universität Bayreuth
D-95440 Bayreuth
E-Mail: Leonid.Dubrovinsky@uni-bayreuth.de
Telefon: +49 (0)921-55 3736 oder 3707

Leyla Ismailova M.Sc.
Laboratorium für Kristallographie
Universität Bayreuth
D-95440 Bayreuth
E-Mail: Leyla.Ismailova@uni-bayreuth.de
Telefon: +49 (0)921-55 3888

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de/

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Der Januskopf des südasiatischen Monsuns
15.06.2018 | Max-Planck-Institut für Chemie

nachricht Was das Eis der West-Antarktis vor 10.000 Jahren gerettet hat, wird ihr heute nicht helfen
14.06.2018 | Potsdam-Institut für Klimafolgenforschung

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Revolution der Rohre

Forscher*innen des Instituts für Sensor- und Aktortechnik (ISAT) der Hochschule Coburg lassen Rohrleitungen, Schläuchen oder Behältern in Zukunft regelrecht Ohren wachsen. Sie entwickelten ein innovatives akustisches Messverfahren, um Ablagerungen in Rohren frühzeitig zu erkennen.

Rückstände in Abflussleitungen führen meist zu unerfreulichen Folgen. Ein besonderes Gefährdungspotential birgt der Biofilm – eine Schleimschicht, in der...

Im Focus: Überdosis Calcium

Nanokristalle beeinflussen die Differenzierung von Stammzellen während der Knochenbildung

Wissenschaftlerinnen und Wissenschaftler der Universitäten Freiburg und Basel haben einen Hauptschalter für die Regeneration von Knochengewebe identifiziert....

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Hengstberger-Symposium zur Sternentstehung

19.06.2018 | Veranstaltungen

LymphomKompetenz KOMPAKT: Neues vom EHA2018

19.06.2018 | Veranstaltungen

Simulierter Eingriff am virtuellen Herzen

18.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Mit Parasiten infizierte Stichlinge beeinflussen Verhalten gesunder Artgenossen

20.06.2018 | Biowissenschaften Chemie

Schlüsselmolekül des Alterns entdeckt

20.06.2018 | Biowissenschaften Chemie

Vorhersage von Kristallisationsprozessen soll bessere Kunststoff-Bauteile möglich machen

20.06.2018 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics