Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Einblicke in den geochemischen Materialkreislauf der Erde

02.10.2014

Die Materialien im oberen Erdmantel, der ungefähr 30 km unter der Erdkruste beginnt, zeichnen sich durch eine ungewöhnliche chemische Vielfalt aus.

Ein internationales Forschungsteam, dem auch Dr. Anja Rosenthal an der Universität Bayreuth angehört, hat jetzt Prozesse im Erdinneren nachgewiesen, die an dieser chemischen Diversität erheblich beteiligt sind. Die Forschungsergebnisse, die langfristig zu einem besseren Verständnis von Magmatismus und Vulkanismus beitragen können, werden in der Forschungszeitschrift ‚Scientific Reports‘ vorgestellt.


Dr. Anja Rosenthal, Marie Curie Research Fellow an der Universität Bayreuth.

Foto: Dr. Stefan Keyssner, BGI; zur Veröffentlichung frei.

Von der Erdkruste ins Erdinnere: Wie Eklogite aus Basalt entstehen

Die Lithosphäre, die starre äußere Hülle der Erde, besteht aus der Erdkruste und dem obersten Erdmantel. Sie setzt sich aus groß- und kleinräumigen Kontinentalplatten zusammen, die sich – wie Eisschollen auf dem Meer – auf dem vorwiegend weicheren Erdmantel bewegen.

Wenn zwei Platten aneinander stoßen, kann es geschehen, dass sich der äußerste Rand der einen Platte unter die benachbarte Platte schiebt und in das tiefe Erdinnere abtaucht. In den Geowissenschaften wird dieser Vorgang als Subduktion bezeichnet. Dabei kann Material der Lithosphäre tief hinab in den Erdmantel transportiert werden.

Die Erdkruste besteht zu großen Teilen aus dem vulkanischen Gestein Basalt. Dieses Gestein wird aus dem heißen Material des oberen Erdmantels an Mittelozeanischen Rücken im Ozean gebildet, wenn benachbarte Kontinentalplatten auseinanderdriften. Wird der Basalt anschließend wieder durch Subduktion zurück in den Erdmantel transportiert und dabei hohen Drücken von mehr als 1,5 Gigapascal ausgesetzt, wandelt er sich in die Hochdruckform Eklogite um.

Wenn Eklogite aufwärts streben:
Schmelzprozesse erzeugen chemische Vielfalt im oberen Erdmantel

Aufgrund von weiteren Transportprozessen, der sogenannten Erdmantelkonvektion, verteilen sich die Eklogite – als einstiges Erdkrustenmaterial – im Erdmantel, der bis zu etwa 2.900 km ins Erdinnere hinabreicht. Was geschieht aber, wenn Eklogite im Erdmantel aufsteigen und sich allmählich der Erdoberfläche nähern?

Dr. Anja Rosenthal hat gemeinsam mit Geowissenschaftlern an der Australian National University in Canberra das weitere ‚Schicksal‘ von Eklogiten im oberen Erdmantel simuliert. In speziellen Stempel-Zylinder-Pressen hat das Forscherteam Drücke von bis zu 50.000 Atmosphären – das entspricht einer Erdmanteltiefe von ungefähr 160 km – und Temperaturen bis zu 1.500 Grad Celsius erzeugt. Das Ergebnis: Die Eklogite schmelzen unter diesen Bedingungen im Erdmantel teilweise oder sogar vollständig auf.

Da eklogitische Schmelzen einen relativ hohen Anteil an Siliciumdioxid besitzen, reagieren sie mit dem umliegenden Peridotit: einem Gestein, das viel ‚ärmer‘ an Siliciumdioxid ist. So entstehen im oberen Erdmantel neue Mantelgesteine, die einen erheblichen Beitrag zur chemischen Diversität im oberen Erdmantel leisten.

Mit einem Marie-Curie-Forschungsstipendium der EU von Canberra nach Bayreuth

Als Marie Curie Research Fellow der Europäischen Union setzt Dr. Anja Rosenthal diese Forschungsarbeiten derzeit am Bayerischen Geoinstitut (BGI) der Universität Bayreuth fort. Hier können mithilfe von Hochleistungspressen Drücke erzeugt werden, wie sie in Tiefen von bis zu ca. 1.000 km im unteren Erdmantel vorherrschen.

Die in Bayreuth durchgeführten Untersuchungen sowie die darauf aufbauenden Modellierungen bestätigten die in Canberra erzielten Ergebnisse. „Nachdem ich meine Dissertation in Australien abgeschlossen habe, möchte ich einige noch unbeantwortete geochemische Forschungs-fragen weiter vertiefen“, so die Bayreuther Postdoktorandin. „Das BGI bietet dafür eine hervorragende Infrastruktur.“

Tiefenabhängige Schmelzprozesse – Entstehung diverser Erdmantelgesteine

Die Kooperation zwischen Dr. Anja Rosenthal und den australischen Geowissenschaftlern hat mittlerweile zu einer weiteren grundlegenden Erkenntnis geführt: Eklogitische Schmelzen, die sich in einer Tiefe von rund 160 km bilden, enthalten mehr Siliciumoxid, aber weniger Natriumoxid und auch weniger Aluminiumoxid als eklogitische Schmelzen, die in geringeren Manteltiefen entstehen.

Diese tiefenabhängigen Variationen lösen wiederum unterschiedliche Reaktionen mit angrenzendem Mantelperidotit aus. Sie tragen somit zur Entstehung verschiedener neuer Gesteine im oberen Erdmantel bei und haben insofern Auswirkungen auf Magmatismus und Vulkanismus.

Geochemisches ‚Recycling‘

„Wenn Magmen oder Gesteine durch Vulkanismus aus dem oberen Erdmantel an die Erdoberfläche transportiert werden, erlauben sie Rückschlüsse auf die eindrucksvolle chemische Diversität, die zum Zeitpunkt ihrer Entstehung im Erdinneren geherrscht haben muss“, erklärt Dr. Anja Rosenthal. „Die Forschungsarbeiten, die wir in ‚Scientific Reports‘ veröffentlicht haben, zeichnen gleichsam einen Materialkreislauf der Erde nach, der von der ozeanischen Erdkruste hinab in die Tiefen des Erdmantels und wieder zurück in Richtung Erdkruste – im Falle von Vulkanausbrüchen sogar bis an die Erdoberfläche – führt.

Wir können daher von einem geochemischen ‚Recycling‘ sprechen. Simulationen und Modellierungen der Prozesse, die an diesem Materialkreislauf beteiligt sind, helfen uns dabei, weltweite Phänomene wie Magmatismus und Vulkanismus erheblich besser zu verstehen.“

Zur Person:

Dr. Anja Rosenthal studierte Geowissenschaften an der Universität Göttingen und an der TU Bergakademie Freiberg. Zudem absolvierte sie Studienaufenthalte an der Gubkin-Universität/Russland, der Durham University/Großbritannien, der Massey University/Neuseeland, der Universität Greifswald und der Universität Mainz. Nach ihrem Diplom/Master an der TU Bergakademie Freiberg promovierte sie 2010 an der Australian National University/Australien. Es folgte ein Forschungsaufenthalt als Post-Doktorandin an der University of Minnesota/USA. Seit September 2012 arbeitet Dr. Anja Rosenthal als Marie Curie Research Fellow am Bayerischen Geoinstitut der Universität Bayreuth.

Veröffentlichung:

Anja Rosenthal et al.,
Continuous eclogite melting and variable refertilisation in upwelling heterogeneous mantle,
Scientific Reports 4, Article number: 6099, DOI: 10.1038/srep06099

Kontakt:

Dr. Anja Rosenthal
Bayerisches Geoinstitut (BGI)
Universität Bayreuth
D-95440 Bayreuth
Tel.: +49 (0)921 55 3729
E-Mail: anja.rosenthal@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de/

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Der Salzwasser-Wächter auf der Darßer Schwelle
19.09.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

OLED auf hauchdünnem Edelstahl

21.09.2017 | Messenachrichten

Weniger (Flug-)Lärm dank Mathematik

21.09.2017 | Physik Astronomie

In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät

21.09.2017 | Geowissenschaften