Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Münstersche Geologen haben Gesteinsmaterial aus Ur-Erdmantel gefunden

25.06.2009
Ein Team von Wissenschaftlern der Universität Münster hat im Osten Indiens Gesteine aus einem uralten Material entdeckt, das aus der Zeit der Erdentstehung stammt.

Es wurde vor rund viereinhalb bis vier Milliarden Jahren gebildet - in der "Höllenzeit" der Erde, dem Hadaikum.

Weltweit ist es erst der zweite Fund dieser Art. Er zeigt, dass bestimmte Bereiche im oberen Erdmantel über Jahrmilliarden unangetastet bleiben und somit Informationen aus der frühesten Zeit der Erde speichern können. Ihre Ergebnisse haben die Forscher in der aktuellen Ausgabe der angesehenen Fachzeitschrift Nature veröffentlicht.

In der Anfangszeit ihrer Geschichte - der "Höllenzeit" - war die Erde von einem Ozean aus geschmolzenem Gestein umgeben, das sich langsam verfestigte. Mit ihrem Fund haben die Wissenschaftler vom Institut für Mineralogie der WWU - Dr. Dewashish Upadhyay, Prof. Dr. Erik Scherer und Prof. Dr. Klaus Mezger - gezeigt, dass Material aus dem Ur-Erdmantel noch heute im Mantel der Erde auffindbar ist, obwohl dieser in ständiger Bewegung ist und im Laufe der Zeit Gesteinsmaterial verschiedenen Alters vermischt wurde.

Die bislang einzige weitere Entdeckung dieser Art wurde vor etwa einem Jahr in Kanada gemacht und sorgte damals für Schlagzeilen. "Jeder Fund, der Einblicke in die Zeit der Erdentstehung gibt, ist Neuland", sagt Prof. Mezger. Daher ist auch dieser zweite Fund so bedeutsam.

Die magmatischen Gesteine stammen aus dem indischen Bundesstaat Orissa. Sie wurden aus Material gebildet, das vor mehr als vier Milliarden Jahren entstanden ist. Vor etwa 1,5 Milliarden Jahren wurde es aufgeschmolzen und bildete die neuen Gesteine im oberen Erdmantel in einer Tiefe von mehr als 40 Kilometern. Durch geologische Bewegungen der Erdkruste und Verwitterungsprozesse gelangten die Gesteine letztendlich an die Erdoberfläche, wo sie von dem münsterschen Forscherteam gefunden wurden.

"Da unsere Erde ein geologisch sehr aktiver Planet ist, werden die Gesteine dauernd neu umgearbeitet, zum Beispiel durch Verwitterung oder Aufschmelzung", sagt Prof. Mezger. "Somit ist das Material der Gesteine, die heute an der Erdoberfläche zu finden sind, sehr alt. Die Minerale, die diese Gesteine aufbauen, sind allerdings viel jünger. Es ist so ähnlich wie beim Backen: Das Mehl ist vor dem Kuchen da." Nach dem zweiten Fund von Gesteinen aus einem uralten Material vermuten die Wissenschaftler nun, dass es noch mehr von diesem Material aus der "Höllenzeit" an der Erdoberfläche gibt - nur hat es bislang niemand entdeckt.

Dazu kommt, dass die Analyse der Gesteinsproben sehr aufwändig ist. Den Beweis für das enorme Alter des Ausgangsmaterials für die viel jüngeren magmatischen Gesteine haben die Wissenschaftler gefunden, indem sie die Häufigkeit eines bestimmten Isotops des Elements Neodym untersucht haben. Sie unterscheidet sich bei solch altem Gesteinsmaterial von dem bekannten Durchschnittswert der Erde. Prof. Mezger sagt: "In der Zukunft wird es sehr interessant sein, solche alten Bereiche im Erdmantel zu lokalisieren und dort Proben zu nehmen. Damit könnten wir die Entwicklungsgeschichte der Erde in ihren Jugendjahren besser verstehen."

Literatur: Upadhyay D., Scherer E. und Mezger K. (2009): 142Nd evidence for an enriched Hadean reservoir in cratonic roots. Nature 459, 1118-1121; doi:10.1038

Dr. Christina Heimken | idw
Weitere Informationen:
http://www.nature.com/nature/journal/v459/n7250/full/nature08089.html
http://www.uni-muenster.de/Mineralogie/personen/mezger.html

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Stagnation im tiefen Südpazifik erklärt natürliche CO2-Schwankungen
23.02.2018 | Carl von Ossietzky-Universität Oldenburg

nachricht Birgt Mikroplastik zusätzliche Gefahren durch Besiedlung mit schädlichen Bakterien?
21.02.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics