Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mount Everest-Region lag bereits vor 17 Millionen Jahren so hoch wie heute

02.07.2013
Vor fast genau 60 Jahren, am 29.5.1953, gelang Edmund Hillary und Tenzing Norgay die Erstbesteigung des Mount Everest, des höchsten Bergs unseres Planeten.

Nun fanden Geowissenschaftler des Frankfurter Biodiversität und Klima Forschungszentrums (BiK-F) gemeinsam mit Kollegen aus den USA und Frankreich heraus, dass das Dach der Welt schon seit mehr als 17 Millionen Jahren so hoch wie heute liegt und seitdem das Klima Südostasiens prägt.


Nordseite des Mt. Everest, vom Rongbuk-Tal (Tibet) aus gesehen. Die Abscherung, die den Kalk des Gipfelbereichs von dem darunterliegenden gelben Marmor trennt, ist gut zu erkennen. Die Proben für die Studie wurden im untersten dunklen Bereich des Massivs gewonnen. © M. Jessup

Die jetzt als Titelstory des Fachjournals Geology publizierten Erkenntnisse sind nicht nur für die Klima- und Evolutionsgeschichte von Bedeutung, sondern auch ein wichtiges Puzzlestück für die Entwicklung von Klimamodellen.

Die Erdgeschichte erschließt sich Forschern typischerweise durch Fossilien und Sedimente, aber genau die fehlen am Mount Everest für wichtige Zeitabschnitte. „In den großen Gebirgen unseres Planeten wird das Gestein kontinuierlich erodiert, so dass uns diese Zeitzeugen oft fehlen“, erläutert Prof. Dr. Andreas Mulch, stellvertretender Direktor des BiK-F und einer der Autoren der Studie. „Sie sind heute verstreut auf dem indischen Subkontinent oder gar im Indischen Ozean zu finden, wohin sie im Laufe der Jahrmillionen durch die Erosionsprozesse transportiert wurden“.

Die üblichen Methoden geologischer Aufzeichnungen funktionieren also auf dem gigantischsten aller Gebirge nicht. „Wir haben deswegen eine noch sehr junge Methode angewandt und in uralten Regentropfen nach Klimaspuren aus der Erdgeschichte gesucht“, erläutert Dr. Aude Gébelin, Geologin am BiK-F und Erstautorin der Studie.

Regentropfen als Zeitzeugen
Gébelin spricht damit die sogenannte Isotopenmessung an, mit der seit gerade einmal zehn Jahren die Topographie von Gebirgen rekonstruiert werden kann. Der Trick bei dieser Forschungsmethode ist, dass Wasser, seien es Regentropfen, Schnee oder Schmelzwasser, eine variierende Zusammensetzung an unterschiedlich schwerem Sauerstoff enthält. Die schwereren Atome des Sauerstoffs (schwere Isotope) nehmen im Vergleich zu den leichteren Isotopen mit zunehmender Höhe systematisch ab. Aus Millionen Jahre alten Gesteinen lässt sich somit anhand der von den Regenwasserablagerungen stammenden Isotopenzusammensetzungen bestimmen, in welcher Höhe der Regentropfen dereinst auf die Erdoberfläche traf, wie hoch also der entsprechende Ort damals lag.

„Die Zusammensetzung der Isotope ist zwar zum großen Teil abhängig von der Höhe, jedoch nicht ausschließlich“, schränkt die Wissenschaftlerin ein. „Auch Jahrestemperatur, Verdunstung und Niederschlagsmenge spielen eine Rolle.“ Um die Effekte des Klimawandels und der Gebirgsbildung auseinanderhalten zu können, wurden die Proben nicht nur am Everest selbst, sondern auch am Fuße des Himalaya genommen, an einem Ort, der vor 17 Millionen Jahren auf Meereshöhe lag. Denn ändert sich das Klima, beeinflusst dies beide Orte in gleichem Maße, so dass der Unterschied im Verhältnis der Sauerstoffisotope allein auf die Höhe zurückzuführen ist.

Alpinistische Herausforderung für die Forscher

Die Spuren der uralten Regentropfen suchten die Forscher dort, wo Regen, Schnee oder Schneeschmelze durch Klüfte in größere Tiefen des Everest-Massivs einsickerten. Dazu mussten Orte am Mount Everest gefunden werden, an denen durch tektonische Prozesse, also Verschiebungen von Gesteinseinheiten, einst mehrere Kilometer tief liegende Gesteine an die Oberfläche gekommen sind. In Zusammenarbeit mit einer amerikanischen Arbeitsgruppe gelang es, an der Nordseite des Mount Everest genau solche Orte zu finden. Die Frankfurter Forscher mussten selbst den Berg hinaufklettern, um an die kostbaren Proben zu kommen: „Aus den kilometerhohen Wänden kann man nicht kiloweise Proben hinunter transportieren“, so Gébelin. Das ist bei der Isotopenmessung auch nicht notwendig, es genügte eine Streichholzschachtel voll Gesteinsmaterial. „Zwei Milligramm haben uns für sämtliche Messungen ausgereicht – eine Spatelspitze voll.“

Ein neues Puzzlestück für Klimamodelle
Die Erkenntnisse, die aus diesen zwei Milligramm Gestein gewonnen wurden, sind umso gewichtiger. Dass der Mount Everest – und auch das dahinter liegende Tibetplateau – bereits vor 17 Millionen Jahren existierten, ist für Klima- und Evolutionsforscher von großer Bedeutung. So sind die Gesteinsproben mit den erdgeschichtlichen Wasserrückständen Zeugen dafür, dass es den Monsunregen bereits vor 17 Millionen Jahren gab. „Es gibt Experten, die behaupten, es gebe ihn erst seit 8-10 Millionen Jahren. Unsere Ergebnisse weisen eher in die Richtung, dass er seit mindestens 20 Millionen Jahren existiert“, so Gébelin. Aber nicht nur Klimaforscher dürften sich für die neuen Erkenntnisse interessieren, sondern auch Biologen: „Der Himalaya ist ein bedeutendes Landschaftselement im Hinblick auf die Migration von Pflanzen und Tieren; er ist ein Riesenhindernis, aber auch eine Stätte relativ schneller biologischer Evolution. Für die Erforschung, wann welche Arten entstanden beziehungsweise verschwanden, ist es wichtig zu wissen, wann der Himalaya entstanden ist.“

Und bezogen auf die Klimaforschung heute?

„Unser Wissen über die Entstehung des größten Gebirges dieser Erde hilft uns auch, die großen Klimaentwicklungen besser nachzuvollziehen. Die Prozesse an der Erdoberfläche großer Gebirgsregionen sind ein besonders wichtiges Puzzlestück bei dem Versuch, globale Klimazusammenhänge zu verstehen und unser Wissen um die aktuelle Klimadebatte durch einen Blick in die Erdgeschichte zu vertiefen“ , resümiert die Wissenschaftlerin.

Publikation:
Gébelin A, Mulch A, Teyssier C, Jessup MJ, Law RD & M Brunel (2013): The Miocene elevation of Mount Everest. – Geology, DOI: 10.1130/G34331.1

Für weitere Informationen kontaktieren Sie bitte:
Prof. Dr. Andreas Mulch
Biodiversität und Klima Forschungszentrum (BiK-F)
Tel. +49 (0)69 7542 1881
andreas.mulch@senckenberg.de

Dr. Aude Gébelin
Biodiversität und Klima Forschungszentrum (BiK-F)
Tel. +49 (0)69 7542 1883
aude.gebelin@senckenberg.de
oder
Dr. Julia Krohmer
Biodiversität und Klima Forschungszentrum (BiK-F), Transferstelle
Tel. +49 (0)69 7542 1837
julia.krohmer@senckenberg.de

LOEWE Biodiversität und Klima Forschungszentrum, Frankfurt am Main
Mit dem Ziel, anhand eines breit angelegten Methodenspektrums die komplexen Wech-selwirkungen von Biodiversität und Klima zu entschlüsseln, wird das Biodiversität und Klima Forschungszentrum (BiK‐F) seit 2008 im Rahmen der hessischen Landes‐Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz (LOEWE) gefördert. Die Senckenberg Gesellschaft für Naturforschung und die Goethe Universität Frankfurt sowie weitere direkt eingebundene Partner kooperieren eng mit regionalen, nationalen und internationalen Akteuren aus Wissenschaft, Ressourcen‐ und Umweltmanagement, um Projektionen für die Zukunft zu entwickeln und wissenschaftlich gesicherte Empfehlungen für ein nachhaltiges Handeln zu geben.

Julia Krohmer | Senckenberg
Weitere Informationen:
http://www.bik‐f.de
http://www.senckenberg.de

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Expedition ans Ende der Welt
29.11.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lakkolithe können auch während eines Vulkanausbruchs entstehen
24.11.2016 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie