Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Moderner Mensch vs. Riesentier - Mega-Pflanzenfresser wurde vom Menschen verdrängt und ersetzt

30.01.2018

Senckenberg-Wissenschaftler Hervé Bocherens hat das Aussterben von Mega-Herbivoren – pflanzenfressende Tiere über eine Tonne Gewicht – vor etwa 12.000 Jahren untersucht. Der Tübinger Wissenschaftler kommt zu dem Schluss, dass der moderne Mensch zum einen Aussterbegrund für die riesigen Landtiere war, zum anderen aber auch deren Ökosystemfunktionen zu Teilen übernommen hat. In seiner kürzlich im Fachjournal „Frontiers in Ecology and Evolution“ veröffentlichten Studie schlussfolgert er, dass eine Auswilderung von Großtieren in einigen Teilen der Welt einen positiven Aspekt bezüglich der Artenvielfalt haben könnte.

Heutzutage gibt es nur wenige Tiere, die ein Gewicht von einer Tonne und mehr auf die Waage bringen. Elefanten, Flusspferde und Nashörner gehören zu diesen „Mega-Pflanzenfressern“ und sind trotz ihrer Größe in ihren Beständen gefährdet.


Ausgestorbener Mega-Pflanzenfresser: das Amerikanische Mammut.

© Senckenberg

„Aus erdgeschichtlicher Sicht ist die geringe Anzahl so weniger großer Tierarten eine Anomalie“ erklärt Prof. Dr. Hervé Bocherens vom Senckenberg Center for Human Evolution and Palaeoenvironment an der Universität Tübingen und fährt fort: „Das prominentestes Beispiel für Riesen der Vergangenheit sind natürlich die Dinosaurier.“

Doch auch in der jüngeren Erdgeschichte gab es Kolosse der Tierwelt, wie beispielsweise Riesen-Faultiere, Wollnashörner und Mammute. Warum diese vor etwa 12.000 Jahren ausstarben und welche Folgen dies für die Umwelt hatte, hat der Tübinger Biogeologe nun untersucht.

„Wie heutige Elefanten fungierten die Mega-Pflanzenfresser als ‚Ökosystem-Ingenieure’. Sie reduzierten den Baumbewuchs und hielten die Landschaft und für viele Tiere lebenswichtige Wasserlöcher offen. In ihrem Verdauungstrakt wanderten Pflanzensamen über viele Kilometer und wurden so verbreitet“, erläutert Bocherens.

Er zeigt in seiner aktuellen Studie, dass diese Aufgaben in der Zeit von vor etwa 45.000 bis 12.000 Jahren vom modernen Menschen übernommen wurden. „In dieser Epoche hat sich der moderne Mensch im nördlichen Eurasia, Nord- und Südamerika und Australien ausgebreitet und die riesigen Pflanzenfresser starben nach und nach aus“, ergänzt Bocherens.

Mit der „neolithischen Revolution“, dem Aufkommen von Ackerbau und Viehzucht, der Vorratshaltung und der Sesshaftigkeit, wurden Teile der Funktionen der ausgestorbenen „Ökosystem-Ingenieure“ wieder ersetzt. Doch in einigen Gebieten, wie beispielsweise in der für Landwirtschaft ungeeigneten Subarktis – einst Heimat der Mammutsteppe – blieb an der Stelle eine Lücke, die bis heute besteht.

Die Lebensweise der Tierriesen beeinflusste die gesamte Vegetation – Bäume wurden klein gehalten und andere Pflanzen hatten genügend Platz und Nährstoffangebot zu wachsen. Die Diversität in der Pflanzenwelt wirkte sich wiederum positiv auf die Vielfalt der Tierwelt aus.

Mit dem Aussterben der pflanzenfressenden Riesen verwaldeten die Steppen zu borealen Nadelwäldern. Die Folge war eine Verringerung des sogenannten „Albedo-Effektes“: Statt einer weißen Schneefläche im Winter oder einer gelblichen Landschaft mit trockenen Gräsern im Sommer, reflektiert das dunkle Grün der Wälder die Sonneneinstrahlung weniger und erwärmt so das Klima.

Zudem waren die Böden der Mammutsteppe trockener und emittierten weniger des Treibhausgases Methan. Bocherens hierzu: „Die Anwesenheit der pflanzenfressenden Riesen hat demnach nicht nur zu einer höheren Artenvielfalt beigetragen, sondern hatte auch Einfluss auf das globale Klima.“

Ein besseres Verständnis der Unterschiede, aber auch der Ähnlichkeiten zwischen den Auswirkungen der ausgestorbenen Mega-Pflanzenfresser und der menschlichen Landwirtschaft auf die Ökosysteme, kann laut der Studie dabei helfen die Zukunft terrestrischer Ökosysteme besser vorherzusagen. „In einigen Gebieten unserer Erde könnte es sogar sinnvoll sein wieder solche Mega-Pflanzenfresser anzusiedeln, um so die Biodiversität zu erhöhen und die Klimaerwärmung zu vermeiden“, resümiert Bocherens.

Kontakt
Prof. Dr. Hervé Bocherens
Senckenberg Center for Human Evolution and Palaeoenvironment (HEP)
Eberhard Karls Universität Tübingen
Tel. 07071- 29-76988
herve.bocherens@uni-tuebingen.de

Judith Jördens
Pressestelle
Senckenberg Gesellschaft für Naturforschung
Tel. 069- 7542 1434
pressestelle@senckenberg.de

Publikation
Bocherens H (2018) The Rise of the Anthroposphere since 50,000 Years: An Ecological Replacement of Megaherbivores by Humans in
Terrestrial Ecosystems? Front. Ecol. Evol. 6:3.
doi: 10.3389/fevo.2018.00003

Die Natur mit ihrer unendlichen Vielfalt an Lebensformen zu erforschen und zu verstehen, um sie als Lebensgrundlage für zukünftige Generationen erhalten und nachhaltig nutzen zu können - dafür arbeitet die Senckenberg Gesellschaft für Naturforschung seit nunmehr 200 Jahren. Diese integrative „Geobiodiversitätsforschung“ sowie die Vermittlung von Forschung und Wissenschaft sind die Aufgaben Senckenbergs. Drei Naturmuseen in Frankfurt, Görlitz und Dresden zeigen die Vielfalt des Lebens und die Entwicklung der Erde über Jahrmillionen. Die Senckenberg Gesellschaft für Naturforschung ist ein Mitglied der Leibniz-Gemeinschaft. Das Senckenberg Naturmuseum in Frankfurt am Main wird von der Stadt Frankfurt am Main sowie vielen weiteren Partnern gefördert.

Mehr Informationen unter www.senckenberg.de

Die Universität Tübingen gehört zu den elf deutschen Universitäten, die als exzellent ausgezeichnet wurden. In den Lebenswissenschaften bietet sie Spitzenforschung im Bereich der Neurowissenschaften, Transnationalen Immunologie und Krebsforschung, der Mikrobiologie und Infektionsforschung sowie der Molekularbiologie. Weitere Forschungsschwerpunkte sind die Geo- und Umweltforschung, Archäologie und Anthropologie, Sprache und Kognition sowie Bildung und Medien. Mehr als 28.400 Studierende aus aller Welt sind aktuell an der Universität Tübingen eingeschrieben. Ihnen steht ein Angebot von rund 300 Studiengängen zur Verfügung – von der Ägyptologie bis zu den Zellulären Neurowissenschaften.

Judith Jördens | Senckenberg Forschungsinstitut und Naturmuseen

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Stagnation im tiefen Südpazifik erklärt natürliche CO2-Schwankungen
23.02.2018 | Carl von Ossietzky-Universität Oldenburg

nachricht Birgt Mikroplastik zusätzliche Gefahren durch Besiedlung mit schädlichen Bakterien?
21.02.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics