Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit GLORIA das Klima besser verstehen

11.01.2016

Das globale Klimageschehen ist komplex und viele Fragen sind noch offen. Klimaforscher des Forschungszentrums Jülich wollen nun zwei davon beantworten: Welche Prozesse beeinflussen den Ozonabbau in der untersten Stratosphäre? Und welche Rolle spielen die schwer aufzuspürenden Schwerewellen für das Klima? Dazu starten Jülicher Wissenschaftler zusammen mit Kollegen mehrerer deutscher Forschungseinrichtungen an Bord des Forschungsflugzeugs HALO vom schwedischen Kiruna aus zu Messflügen nach Norden. In bis zu 14 Kilometer Höhe wird auch der am Forschungszentrum Jülich entwickelte Detektor GLORIA zum Einsatz kommen.

Über der Antarktis bildet sich jedes Jahr ein Ozonloch, das mehr UV-Strahlung zum Erdboden durchlässt als die intakte Ozonschicht. Auch über der Arktis wird im Winter Ozon abgebaut, doch in welchem Umfang und wie dies genau abläuft, ist noch unklar.


HALO in der LuftForschungsflugzeug HALO im Einsatz

Copyright: DLR

Im Verbundprojekt POLSTRACC (Polar Stratosphere in a Changing Climate) starten Wissenschaftler des Forschungszentrums Jülich zusammen mit mehreren Partnern von Januar bis März 2016 vom schwedischen Kiruna aus mit dem Forschungsflugzeug HALO (High Altitude and Long Range Research Aircraft) zu mehreren Messflügen in die Tropopausenregion, eine Schicht der Erdatmosphäre zwischen Troposphäre und Stratosphäre in etwa sieben bis 14 Kilometern Höhe. Dort sollen die Ozonkonzentration und die chemische Spurengaszusammensetzung über die Monate hinweg bestimmt werden.

"Wir wollen uns die polare Ozonchemie in der Tropopausenregion anschauen, denn dort sind noch viele Fragen offen", sagt Dr. Jens-Uwe Grooß vom Jülicher Institut für Energie- und Klimaforschung. "Aber es soll nicht nur Ozon gemessen werden, sondern zum Beispiel auch die Konzentration von Salpetersäure, denn sie beeinflusst, wie viel Ozon zersetzt wird. Außerdem wollen wir klären, in welchem Maß flüssige Salpetersäure-Aerosole daran beteiligt sind und wie weit nach unten der Ozonabbau in der Stratosphäre reicht."

GLORIA liefert mehr Daten als bisherige Geräte

Das für diese Messungen wichtigste Gerät an Bord wurde am Forschungszentrum Jülich und am Karlsruher Institut für Technologie (KIT) entwickelt und gebaut: GLORIA (Gimballed Limb Observer for Radiance Imaging of the Atmosphere) ist ein Infrarotspektrometer, mit dem ein zweidimensionales Bild der Atmosphäre erstellt werden kann, sozusagen ein "Foto", etwa der Ozonverteilung.

"Mit GLORIA erhalten wir alle paar Sekunden während des Fluges ein Bild der gesamten Spurengasverteilung der Atmosphäre vom Boden bis zur jeweiligen Flughöhe", erläutert Jens-Uwe Grooß. "Das heißt, GLORIA liefert uns eine ungeheuer große Datenmenge." Diese Daten sollen im Projekt POLSTRACC ausgewertet werden, um die Prozesse in der Atmosphäre besser zu verstehen, damit zukünftige Klimamodelle genauere Prognosen liefern können.

Den Schwerewellen auf der Spur

Die Rolle der Schwerewellen am Klimageschehen ist bislang noch nicht völlig verstanden. Schwerewellen sind periodische Bewegungen der Luft, in denen diese auf- und absteigt und die dadurch mit Temperaturschwankungen von bis zu zehn Grad Celsius verbunden sind.

Die dreidimensionalen Wellenstrukturen haben häufig horizontale Wellenlängen von mehreren hundert Kilometern. Sie bilden sich in der Troposphäre und breiten sich nach oben in die Stratosphäre aus. Bekannt ist, dass Schwerewellen an der Atmosphärendynamik beteiligt sind, indem sie Energie in die obere Stratosphäre transportieren und dadurch die globale Luftmassen-Zirkulation beeinflussen.

Bislang waren Schwerewellen nur schwer zu beobachten. Ein Laser des Deutschen Zentrums für Luft- und Raumfahrt (DLR), das dieses Projekt koordiniert, soll vom Flugzeug aus nach oben bis in die obere Stratosphäre Laserstrahlen aussenden und so helfen, Schwerewellen aufzuspüren. Und auch hier ist GLORIA beteiligt: Das Infrarotspektrometer soll über Temperaturmessungen die dreidimensionale Struktur der Schwerewellen sichtbar machen.

Über POLSTRACC

Etwa 70 Wissenschaftler, Ingenieure, Techniker, Piloten und Logistiker werden im Hangar "Arena Arctica" im schwedischen Kiruna am Polarkreis vor Ort sein. Partner im Projekt POLSTRACC (Polar Stratosphere in a Changing Climate) sind neben dem Forschungszentrum Jülich das Karlsruher Institut für Technologie (KIT), das Deutsche Zentrum für Luft- und Raumfahrt (DLR), sowie die Universitäten Heidelberg, Frankfurt, Mainz und Wuppertal. Zwischen Januar und März 2016 dient die "Arena Arctica" als Basis für zehn bis 15 Forschungsflüge über das Eismeer in Richtung Grönland und Nordpol.

Über HALO

Das Forschungsflugzeug HALO (High Altitude and Long Range Research Aircraft) ist eine Gemeinschaftsinitiative deutscher Umwelt- und Klimaforschungseinrichtungen. Gefördert wird HALO durch Zuwendungen des Bundesministeriums für Bildung und Forschung (BMBF), der Deutschen Forschungsgemeinschaft (DFG), der Helmholtz-Gemeinschaft, der Max-Planck-Gesellschaft (MPG), der Leibniz-Gemeinschaft, des Freistaates Bayern, des Karlsruher Instituts für Technologie (KIT), des Deutschen GeoForschungsZentrums GFZ, des Forschungszentrums Jülich und des Deutschen Zentrums für Luft- und Raumfahrt (DLR).

Weitere Informationen:

Institut für Energie- und Klimaforschung, Bereich Stratosphäre (IEK-7)


Ansprechpartner:

Dr. Jens-Uwe Grooß
Institut für Energie- und Klimaforschung, Bereich Stratosphäre (IEK-7)
Tel.: 02461 61-9184
E-Mail: j.-u.grooss@fz-juelich.de

Pressekontakt:

Erhard Zeiss, Pressereferent
Tel.: 02461 61-1841
E-Mail: e.zeiss@fz-juelich.de

Dr. Barbara Schunk, Pressereferentin
Tel.: 02461 61-8031
E-Mail: b.schunk@fz-juelich.de

Erhard Zeiss | Forschungszentrum Jülich
Weitere Informationen:
http://www.fz-juelich.de

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Stagnation im tiefen Südpazifik erklärt natürliche CO2-Schwankungen
23.02.2018 | Carl von Ossietzky-Universität Oldenburg

nachricht Birgt Mikroplastik zusätzliche Gefahren durch Besiedlung mit schädlichen Bakterien?
21.02.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics