Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mikrowellenradar überwacht rutschige Hänge - Geodäten der TU Darmstadt forschen in den Alpen

04.03.2014

Wenn ganze Berghänge ins Rutschen geraten, droht Gefahr. Vorhersage und Überwachung dieser Massenbewegungen sind nicht immer einfach. In einem internationalen Projekt kombinierten Wissenschaftler der TU Darmstadt in Nordtirol Rechenmodelle mit Mikrowellenradarsystemen – mit vielversprechenden Ergebnissen.

Der Hang „Steinlehnen“ in Nordtirol (Österreich) kam 2003 in Bewegung. Felsstürze bedrohten Menschen, Straßen und Gebäude. Mittlerweile ist wieder Ruhe eingekehrt, der Hang „kriecht“ nur noch, aber für Wissenschaftler ist der „Steinlehnen“ in den vergangenen Jahren zum interessanten Forschungsobjekt geworden.

Professor Andreas Eichhorn, Fachgebiet Geodätische Messsysteme und Sensorik am Fachbereich Bau- und Umweltingenieurwissenschaften der Technischen Universität Darmstadt, stieß das interdisziplinäre Projekt KASIP (Knowledge-based Alarm System with Identified Deformation Predictor) in Zusammenarbeit mit der TU Wien und dem Forschungsinstitut alpS an, bei dem es darum ging, die messtechnische Beobachtung des Hanges mit Computermodellen zu verknüpfen.

„Ein Hang ist etwas ungeheuer Komplexes“, sagt Eichhorn. Wie genau eine Bergflanke aufgebaut ist und wie ein Versagensmechanismus dann im Detail funktioniert, lässt sich nur schwer ergründen. So wird man sich auch in Zukunft nicht allein auf computergestützte Modelle zur Vorhersage von Massenbewegungen verlassen können, sondern braucht zusätzlich effektive, präzise und möglichst umfassende Überwachungs- und Beobachtungssysteme. 

Dafür testeten Eichhorn und sein Team am „Steinlehnen“ verschiedene Methoden. „Die Installation von Sensoren in hochaktiven Zonen des Berges ist sehr gefährlich“, erklärt Eichhorn. „Wir haben nach einem Verfahren gesucht, das unter anderem eine berührungslose Beobachtung möglich macht.“

Am Ende erwies sich eine Technologie als besonders geeignet, deren physikalisches Grundprinzip zwar in der Geodäsie schon lange zum Einsatz kommt, aber für die Überwachung von Hängen noch nie genutzt wurde: ein Mikrowellenradar des Fachgebiets Physikalische Geodäsie und Satellitengeodäsie der TU Darmstadt (Professor Matthias Becker), das die Darmstädter Wissenschaftler um Eichhorn am „Steinlehnen“ prototypisch anwendeten.

Dabei wird ein Hang auf ganzer Fläche mit Mikrowellen „beschossen“, die von der Oberfläche zurückgeworfen werden und analysiert werden können. Durch den Vergleich verschiedener Messungen können die Wissenschaftler Veränderungen im Millimeterbereich dokumentieren. Anhäufungen oder Abtragungen von Felsmaterial oder auch der Beginn einer größeren Rutschung können so erfasst werden, wie Eichhorn erklärt.

Im Gegensatz zu Verfahren, die die Oberfläche etwa mit Laserlicht abtasten, liefern Mikrowellen viel weniger Stördaten. „Beim Laser ist das Rauschen zu groß“, sagt Eichhorn. Die Doktorandin Sabine Rödelsperger entwickelte in ihrer Dissertation eine Auswertestrategie zur Interpretation der Messdaten, die es unter anderem auch ermöglicht, meteorologische Störeinflüsse herauszurechnen und zu aussagekräftigen 3D-Bildern des Hangs zu kommen.

Während der KASIP-Kampagne gewannen die Geodäten aus Darmstadt gemeinsam mit ihren Kollegen aus der Geophysik viele wichtige Erkenntnisse zur genaueren Interpretation etwa von geophysikalisch beobachteten Phänomen oder auch zur Korrelation zwischen Wetter und dem Rutschverhalten des Hangs. Doch die Forschung hat auch praktischen Nutzen, wie Eichhorn erklärt: „Rein technologisch ist eine kontinuierliche, flächenhafte, hochaufgelöste Überwachung eines kritischen Hangs möglich. Man kann Beschleunigungen – als einen frühzeitigen Indikator für ein mögliches Abrutschen großer Massen – erkennen und auch feststellen, wann der Hang wieder zur Ruhe kommt.“

Die Mikrowellen-Radargeräte sind noch sehr teuer, aber das Verfahren habe bereits jetzt Potenzial für ein gutes Frühwarnsystem: „Wenn man kritische Hänge damit beobachten würde, könnte man zuverlässig feststellen, wo gerade etwas geschieht“, sagt Eichhorn. „Dort könnte man dann gezielt günstigere Messsysteme mit ihren Sensoren zum Einsatz bringen.“

Weitere Informationen
Das aus dem Griechischen stammende Wort Geodäsie bedeutet „die Erde teilen“. Bis zum 19. Jahrhundert waren es vorwiegend Astronomen, Mathematiker und Physiker, die sich mit geodätischen Problemen befassten. Für die Ausführung praktischer Arbeiten waren Bezeichnungen wie Geometer, Feld- und Landmesser gebräuchlich. Seit den 30er Jahren des vergangenen Jahrhunderts sprach man zunehmend vom Vermessungsingenieur. Heute ist das Berufsfeld Geodäsie und Geoinformation eine stark naturwissenschaftlich geprägte Ingenieurdisziplin zwischen angewandter Mathematik, Physik, Informatik und Elektrotechnik einerseits sowie Bauingenieurwesen, Maschinenbau, Planungs- und Geowissenschaften andererseits. Klassische Messwerkzeuge wurden abgelöst durch automatisierte Geräte, moderne Satellitentechnologie und digitale Fernerkundungssensoren. Die Geoinformation aus allen Bereichen wird durch computergestützte Verfahren der Geoinformatik erfasst und multimedial präsentiert.

Pressekontakt
Prof. Dr. Andreas Eichhorn
Technische Universität Darmstadt
Institut für Geodäsie
Tel.: 06151/16-2147
eichhorn@geod.tu-darmstadt.de

Weitere Informationen:

http://www.geodesy.tu-darmstadt.de/geodaesie/index.de.jsp

Silke Paradowski | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.tu-darmstadt.de

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Winzige Eisverluste an den Rändern der Antarktis können Eisverluste in weiter Ferne beschleunigen
11.12.2017 | Potsdam-Institut für Klimafolgenforschung

nachricht Was macht Korallen krank?
08.12.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Stottern: Stoppsignale im Gehirn verhindern flüssiges Sprechen

12.12.2017 | Biowissenschaften Chemie

E-Mobilität: Neues Hybridspeicherkonzept soll Reichweite und Leistung erhöhen

12.12.2017 | Energie und Elektrotechnik

Wie Brände die Tundra langfristig verändern

12.12.2017 | Ökologie Umwelt- Naturschutz