Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mikrowellenradar überwacht rutschige Hänge - Geodäten der TU Darmstadt forschen in den Alpen

04.03.2014

Wenn ganze Berghänge ins Rutschen geraten, droht Gefahr. Vorhersage und Überwachung dieser Massenbewegungen sind nicht immer einfach. In einem internationalen Projekt kombinierten Wissenschaftler der TU Darmstadt in Nordtirol Rechenmodelle mit Mikrowellenradarsystemen – mit vielversprechenden Ergebnissen.

Der Hang „Steinlehnen“ in Nordtirol (Österreich) kam 2003 in Bewegung. Felsstürze bedrohten Menschen, Straßen und Gebäude. Mittlerweile ist wieder Ruhe eingekehrt, der Hang „kriecht“ nur noch, aber für Wissenschaftler ist der „Steinlehnen“ in den vergangenen Jahren zum interessanten Forschungsobjekt geworden.

Professor Andreas Eichhorn, Fachgebiet Geodätische Messsysteme und Sensorik am Fachbereich Bau- und Umweltingenieurwissenschaften der Technischen Universität Darmstadt, stieß das interdisziplinäre Projekt KASIP (Knowledge-based Alarm System with Identified Deformation Predictor) in Zusammenarbeit mit der TU Wien und dem Forschungsinstitut alpS an, bei dem es darum ging, die messtechnische Beobachtung des Hanges mit Computermodellen zu verknüpfen.

„Ein Hang ist etwas ungeheuer Komplexes“, sagt Eichhorn. Wie genau eine Bergflanke aufgebaut ist und wie ein Versagensmechanismus dann im Detail funktioniert, lässt sich nur schwer ergründen. So wird man sich auch in Zukunft nicht allein auf computergestützte Modelle zur Vorhersage von Massenbewegungen verlassen können, sondern braucht zusätzlich effektive, präzise und möglichst umfassende Überwachungs- und Beobachtungssysteme. 

Dafür testeten Eichhorn und sein Team am „Steinlehnen“ verschiedene Methoden. „Die Installation von Sensoren in hochaktiven Zonen des Berges ist sehr gefährlich“, erklärt Eichhorn. „Wir haben nach einem Verfahren gesucht, das unter anderem eine berührungslose Beobachtung möglich macht.“

Am Ende erwies sich eine Technologie als besonders geeignet, deren physikalisches Grundprinzip zwar in der Geodäsie schon lange zum Einsatz kommt, aber für die Überwachung von Hängen noch nie genutzt wurde: ein Mikrowellenradar des Fachgebiets Physikalische Geodäsie und Satellitengeodäsie der TU Darmstadt (Professor Matthias Becker), das die Darmstädter Wissenschaftler um Eichhorn am „Steinlehnen“ prototypisch anwendeten.

Dabei wird ein Hang auf ganzer Fläche mit Mikrowellen „beschossen“, die von der Oberfläche zurückgeworfen werden und analysiert werden können. Durch den Vergleich verschiedener Messungen können die Wissenschaftler Veränderungen im Millimeterbereich dokumentieren. Anhäufungen oder Abtragungen von Felsmaterial oder auch der Beginn einer größeren Rutschung können so erfasst werden, wie Eichhorn erklärt.

Im Gegensatz zu Verfahren, die die Oberfläche etwa mit Laserlicht abtasten, liefern Mikrowellen viel weniger Stördaten. „Beim Laser ist das Rauschen zu groß“, sagt Eichhorn. Die Doktorandin Sabine Rödelsperger entwickelte in ihrer Dissertation eine Auswertestrategie zur Interpretation der Messdaten, die es unter anderem auch ermöglicht, meteorologische Störeinflüsse herauszurechnen und zu aussagekräftigen 3D-Bildern des Hangs zu kommen.

Während der KASIP-Kampagne gewannen die Geodäten aus Darmstadt gemeinsam mit ihren Kollegen aus der Geophysik viele wichtige Erkenntnisse zur genaueren Interpretation etwa von geophysikalisch beobachteten Phänomen oder auch zur Korrelation zwischen Wetter und dem Rutschverhalten des Hangs. Doch die Forschung hat auch praktischen Nutzen, wie Eichhorn erklärt: „Rein technologisch ist eine kontinuierliche, flächenhafte, hochaufgelöste Überwachung eines kritischen Hangs möglich. Man kann Beschleunigungen – als einen frühzeitigen Indikator für ein mögliches Abrutschen großer Massen – erkennen und auch feststellen, wann der Hang wieder zur Ruhe kommt.“

Die Mikrowellen-Radargeräte sind noch sehr teuer, aber das Verfahren habe bereits jetzt Potenzial für ein gutes Frühwarnsystem: „Wenn man kritische Hänge damit beobachten würde, könnte man zuverlässig feststellen, wo gerade etwas geschieht“, sagt Eichhorn. „Dort könnte man dann gezielt günstigere Messsysteme mit ihren Sensoren zum Einsatz bringen.“

Weitere Informationen
Das aus dem Griechischen stammende Wort Geodäsie bedeutet „die Erde teilen“. Bis zum 19. Jahrhundert waren es vorwiegend Astronomen, Mathematiker und Physiker, die sich mit geodätischen Problemen befassten. Für die Ausführung praktischer Arbeiten waren Bezeichnungen wie Geometer, Feld- und Landmesser gebräuchlich. Seit den 30er Jahren des vergangenen Jahrhunderts sprach man zunehmend vom Vermessungsingenieur. Heute ist das Berufsfeld Geodäsie und Geoinformation eine stark naturwissenschaftlich geprägte Ingenieurdisziplin zwischen angewandter Mathematik, Physik, Informatik und Elektrotechnik einerseits sowie Bauingenieurwesen, Maschinenbau, Planungs- und Geowissenschaften andererseits. Klassische Messwerkzeuge wurden abgelöst durch automatisierte Geräte, moderne Satellitentechnologie und digitale Fernerkundungssensoren. Die Geoinformation aus allen Bereichen wird durch computergestützte Verfahren der Geoinformatik erfasst und multimedial präsentiert.

Pressekontakt
Prof. Dr. Andreas Eichhorn
Technische Universität Darmstadt
Institut für Geodäsie
Tel.: 06151/16-2147
eichhorn@geod.tu-darmstadt.de

Weitere Informationen:

http://www.geodesy.tu-darmstadt.de/geodaesie/index.de.jsp

Silke Paradowski | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.tu-darmstadt.de

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Flechten aus dem Bernsteinwald
25.04.2017 | Georg-August-Universität Göttingen

nachricht Riesenfaultier war Vegetarier - Ernährung des fossilen Megatheriums entschlüsselt
18.04.2017 | Senckenberg Forschungsinstitut und Naturmuseen

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

„Microbiology and Infection“ - deutschlandweit größte Fachkonferenz in Würzburg

25.04.2017 | Veranstaltungen

Berührungslose Schichtdickenmessung in der Qualitätskontrolle

25.04.2017 | Veranstaltungen

Forschungsexpedition „Meere und Ozeane“ mit dem Ausstellungsschiff MS Wissenschaft

24.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Microbiology and Infection“ - deutschlandweit größte Fachkonferenz in Würzburg

25.04.2017 | Veranstaltungsnachrichten

Auf dem Weg zur lückenlosen Qualitätsüberwachung in der gesamten Lieferkette

25.04.2017 | Verkehr Logistik

Digitalisierung bringt Produktion zurück an den Standort Deutschland

25.04.2017 | Wirtschaft Finanzen