Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Methanaustritte in der Tiefsee

08.11.2012
Neue Fallstudie bilanziert Gasemissionen im Indischen Ozean

Methan im Meeresboden – Energiequelle der Zukunft oder Bedrohung für das Weltklima? Wissenschaft und Gesellschaft diskutieren kontrovers über diese Frage.


Der Greifarm des MARUM-QUEST (rechts) setzt einen Trichter bzw. den "Bubblmeter" aus, mit dem die austretenden Gasblasen eingefangen und gemessen werden.

Foto: MARUM, Universität Bremen


Der Meeresboden im Untersuchungsgebiet vor Pakistan ist teilweise dicht mit Muscheln und Krabben bedeckt.

Foto: MARUM, Universität Bremen

In einer Fallstudie, die jetzt im Journal of Geophysical Research erschien, schätzt ein MARUM-Team unter Federführung von Dr. Miriam Römer erstmals ab, wie viel Methan in den Tiefen des nordöstlichen Indischen Ozeans austritt. Die Wissenschaftlerinnen untersuchten zudem, ob das austretende Treibhausgas Methan durch die Wassersäule aufsteigt und in die Atmosphäre gelangt.

Methan blubbert in vielen Regionen aus dem Meeresboden: Im Schwarzen Meer, im Golf von Mexiko, im Nordatlantik, aber auch im östlichen Pazifik. Während einer Expedition mit dem deutschen Forschungsschiff METEOR untersuchte ein MARUM-Team Methanaustritte am Makran-Kontinentalrand vor Pakistan.

Der 400 bis 500 Kilometer breite untermeerische Hang zieht sich über 1.000 Kilometer entlang der iranisch-pakistanischen Küste und besteht zum großen Teil aus parallelen Bergrücken, die bis zu 1.000 Meter hoch aufragen. Er entstand im Lauf von Jahrmillionen, weil dort die Arabische Erdplatte mit einer Geschwindigkeit von bis zu vier Zentimetern pro Jahr unter der Eurasischen Platte abtaucht. Dabei hobelt die Eurasische Platte große Mengen Gesteinsmaterial von der abtauchenden Arabischen Platte. Diese „Späne“ wurden im Lauf der Zeit durch die Plattenbewegung gestaucht und bilden heute den Makran-Kontinentalrand.

„Das untermeerische Rückensystem erstreckt sich über eine Fläche so groß wie Schweden“, sagt die Geowissenschaftlerin Dr. Miriam Römer. „Im seinem Zentrum haben wir mit schiffseigenen Echoloten und unserem Tauchroboter MARUM-QUEST den Meeresboden systematisch in einem langen, 50 Kilometer breiten Streifen erfasst. Dabei fanden wir in Wassertiefen zwischen 575 und 2 870 Metern insgesamt 18 Methanquellen; zwölf davon waren aktiv.“

In den Echolotdaten erscheinen die Austritte als bis zu 2.000 Meter hohe Gasfahnen im Meer (Abbildungen dazu: www.marum.de/Makran.html). Tauchgänge mit MARUM-QUEST brachten mehr Licht ins Dunkel der Methanquellen: Mit Hilfe der auf dem Tauchroboter installierten HD-Kameras fand das Forscherteam heraus, dass die Gasbläschen durchschnittlich etwa einen halben Zentimeter Durchmesser hatten. Besonders bemerkenswert: Die einzelnen Quellen sprudeln unterschiedlich stark; manche geben nur 90 Milliliter, andere bis zu 1,6 Liter Methan pro Minute ins Meerwasser ab. Da der Quelldruck im Lauf der Zeit schwankt, manche Quellen versiegen, andernorts neue entstehen, ist eine Abschätzung der Gesamtmenge des am Makran-Kontinentalrand sprudelnden Methans mit erheblichen Unsicherheiten verbunden. „Unseren konservativen Berechnungen zufolge treten am Makran-Rücken jährlich umgerechnet etwa 640.000 Kilogramm Methan aus“, sagt Dr. Miriam Römer.

Zwar steigen die Methanbläschen mit zehn bis 30 Zentimeter pro Sekunde Richtung Meeresoberfläche auf. Die Echolot-Messungen belegen aber, dass sich die Gasfahnen oberhalb von 700 Meter Meerestiefe, also weit unter der Meeresoberfläche verflüchtigen: „Das Methan löst sich im Meerwasser auf. Es entweicht also nicht in die Atmosphäre und hat keine Auswirkungen auf das globale Klima,“ bilanziert Dr. Miriam Römer, die sich im übrigen beeindruckt zeigt von den Fotos und Videos, die MARUM-QUEST von den Methanquellen in den Tiefen des Indischen Ozeans lieferte: „An manchen Stellen war der Tiefseeboden von Unmengen an Muscheln, Krebsen und Röhrenwürmern bedeckt. Diese Tiefseebewohner können nur überleben, weil dort Methan austritt, das von Mikroorganismen genutzt wird, die wiederum die Grundlage dieses faszinierenden Ökosystems bilden, das ohne Licht als auskommt.“

„Unsere Ergebnisse aus der Makran-Region sind auf viele, aber eben nicht alle ozeanischen Methanaustritte übertragbar“, betont Dr. Miriam Römer. So gibt es Hinweise, dass Gasblasen, die mit einem Ölfilm ummantelt sind, Methan aus großen Wassertiefen bis in die Atmosphäre transportieren können. Kürzlich bewilligte die Deutsche Forschungsgemeinschaft eine Expedition der Bremer Wissenschaftlerinnen in den südlichen Golf von Mexiko. Dort sind natürliche Öl- und Methanaustritte am Meeresboden bekannt. Diese Forschungsfahrt ist für 2014 geplant.

Das wissenschaftliche Paper erschien in JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117, C10015, doi:10.1029/2011JC007424, 2012:
Miriam Römer, Heiko Sahling, Thomas Pape, Gerhard Bohrmann, and Volkhard Spieß:
Quantification of gas bubble emissions from submarine
hydrocarbon seeps at the Makran continental margin
(offshore Pakistan)
Kurzfilme zum Thema:
1) u.a. Unterwasser-Aufnahmen vom Makran-Kontinentalrand: www.marum.de/DFG_Science_TV_6_Muscheln_im_Dienste_der_Wissenschaft.html

2) Video einer früheren MARUM-Expedition in den Golf von Mexiko: http://www.marum.de/DFG_Science_TV_5_Leben_im_Asphalt.html

Weitere Informationen / Interviewanfragen / Fotos:
Albert Gerdes
MARUM – Zentrum für Marine Umweltwissenschaften
Universität Bremen
Tel.: 0421 218 65540
Email: agerdes@marum.de

Albert Gerdes | idw
Weitere Informationen:
http://www.marum.de

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Einblicke unter die Oberfläche des Mars
21.07.2017 | Jacobs University Bremen gGmbH

nachricht Tauender Permafrost setzt altes Treibhausgas frei
19.07.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

Gipfeltreffen der String-Mathematik: Internationale Konferenz StringMath 2017

24.07.2017 | Veranstaltungen

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

IT-Experten entdecken Chancen für den Channel-Markt

25.07.2017 | Unternehmensmeldung

Erst hot dann Schrott! – Elektronik-Überhitzung effektiv vorbeugen

25.07.2017 | Seminare Workshops

Dichtes Gefäßnetz reguliert Bildung von Thrombozyten im Knochenmark

25.07.2017 | Biowissenschaften Chemie