Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Melting Glaciers Raise Sea Level

14.11.2012
Anthropogenic climate change leads to melting glaciers and rising sea level.
Between 1902 and 2009, melting glaciers contributed 11 cm to sea level rise. They were therefore the most important cause of sea level rise. This is the result of a new assessment by scientists of the University of Innsbruck. They numerically modeled the changes of each of the world’s 300 000 glaciers. Until 2100, glaciers could lead to an additional 22 cm of sea level rise.

Since 1900 the global sea level has risen by approximately 20 cm. Melting glaciers are one of the causes – along with warming and thereby expanding sea water, melting Greenland and Antarctic ice sheets, and changing terrestrial water storage in dammed lakes and groundwater reservoirs.

Until 2300, we can expect the sea level to rise between 25 and 42 cm due to glacier melt. With 42 cm sea level rise, most of the glaciers of the world will be gone, leaving behind only small remains in very high altitudes.

Ben Marzeion

A team of scientists at the University of Innsbruck has now assessed the contribution of melting glaciers to sea level rise during the 20th century. They numerically modeled each of the world’s roughly 300 000 glaciers and used thousands of on-site measurements to validate the model results.

“These calculations show that between 1902 and 2009, glaciers contributed about 11 cm to sea level rise”, says Dr. Ben Marzeion from the Institute for Meteorology and Geophysics. “This means they were the most important cause of sea level change.” Surprisingly, melt rates were more or less constant over time: While temperatures during the first decades of the 20th century were considerably lower, glaciers were larger and extended into lower and thus warmer areas. Additionally, brief but strong warm episodes in the Arctic led to strong glacier retreat in the Arctic in the 1930s and 1950s.

Alps will lose half of the ice until 2040

Using 15 different climate models, the Innsbruck scientists also investigated the future fate of the glaciers. “There are big regional differences”, says Dr. Marzeion. “Also the future behavior of humankind is important – i.e., how much carbon dioxide and other greenhouse gases will be emitted.”

In the climate models four different scenarios of future economic, social, and technological development were used to represent different levels of greenhouse gas emissions. “Regions with small glaciers, such as the Alps, will lose a large fraction of their ice during the coming decades”, explains the climate scientist. “In the Alps, half of the ice will be gone by approximately 2040. But in absolute numbers, this loss is relatively small: until then, the Alps will contribute only 0.2 mm to sea level rise.”

Regions with large glaciers, however, will lose a lot of mass in absolute numbers, while a relatively large fraction remains: “In the Canadian Arctic about 70% of the ice will remain in 2100, but this region alone will have contributed about 2 cm to sea level rise by then”, says Ben Marzeion.

Stronger sea level rise ahead

Melting glaciers will raise the sea level between 15 and 22 cm until 2100. “Where we end up within this range is up to us – it mostly depends on how much greenhouse gas we will emit”, says Marzeion. The same is true for the longer term: “Until 2300, we can expect the sea level to rise between 25 and 42 cm due to glacier melt. With 42 cm sea level rise, most of the glaciers of the world will be gone, leaving behind only small remains in very high altitudes.” But also in the future, warming and thus expanding sea water, melting of the Greenland and Antarctic ice sheets, and changing terrestrial water storage have to be added to obtain the full sea level rise.

Reference: Past and future sea-level change from the surface mass balance of glaciers. B. Marzeion, A. H. Jarosch, and M. Hofer. The Cryosphere, 6, 1295-1322, 2012 DOI:10.5194/tc-6-1295-2012 http://dx.doi.org/10.5194/tc-6-1295-2012

Contact:
Ben Marzeion
Institute of Meteorology and Geophysics
University of Innsbruck
Tel.: +43 512 507-5482
E-Mail: ben.marzeion@uibk.ac.at

Christian Flatz
Public Relations
University of Innsbruck
Tel.: +43 512 507-32022
Mobil: +43 676 872532022
E-Mail: christian.flatz@uibk.ac.at

Dr. Christian Flatz | Universität Innsbruck
Further information:
http://dx.doi.org/10.5194/tc-6-1295-2012
http://www.uibk.ac.at

More articles from Earth Sciences:

nachricht First Eastern Pacific tropical depression runs ahead of dawn
29.05.2015 | NASA/Goddard Space Flight Center

nachricht The Arctic: Interglacial period with a break
28.05.2015 | Goethe-Universität Frankfurt am Main

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Galapagos-Vulkanismus: Überraschend explosiv

Internationales Vulkanologen-Team präsentiert neue Erkenntnisse zur Eruptions-Geschichte

Vor 8 bis 16 Millionen Jahren gab es im Gebiet der heutigen Galapagos-Inseln einen hochexplosiven Vulkanismus. Das zeigt erstmals die Auswertung von...

Im Focus: Lasers are the key to mastering challenges in lightweight construction

Many joining and cutting processes are possible only with lasers. New technologies make it possible to manufacture metal components with hollow structures that are significantly lighter and yet just as stable as solid components. In addition, lasers can be used to combine various lightweight construction materials and steels with each other. The Fraunhofer Institute for Laser Technology ILT in Aachen is presenting a range of such solutions at the LASER World of Photonics trade fair from June 22 to 25, 2015 in Munich, Germany, (Hall A3, Stand 121).

Lightweight construction materials are popular: aluminum is used in the bodywork of cars, for example, and aircraft fuselages already consist in large part of...

Im Focus: Wie Solarzellen helfen, Knochenbrüche zu finden

FAU-Forscher verwenden neues Material für Röntgendetektoren

Nicht um Sonnenlicht geht es ihnen, sondern um Röntgenstrahlen: Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) haben zusammen mit...

Im Focus: Festkörper-Photonik ermöglicht extrem kurzwellige UV-Strahlung

Mit ultrakurzen Laserpulsen haben Wissenschaftler aus dem Labor für Attosekundenphysik in dünnen dielektrischen Schichten EUV-Strahlung erzeugt und die zugrunde liegenden Mechanismen untersucht.

Das Jahr 1961, die Erfindung des Lasers lag erst kurz zurück, markierte den Beginn der nichtlinearen Optik und Photonik. Denn erstmals war es Wissenschaftlern...

Im Focus: Solid-state photonics goes extreme ultraviolet

Using ultrashort laser pulses, scientists in Max Planck Institute of Quantum Optics have demonstrated the emission of extreme ultraviolet radiation from thin dielectric films and have investigated the underlying mechanisms.

In 1961, only shortly after the invention of the first laser, scientists exposed silicon dioxide crystals (also known as quartz) to an intense ruby laser to...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Potenzial aller Kinder erkennen

29.05.2015 | Veranstaltungen

Cannabis – eine andauernde Kontroverse

29.05.2015 | Veranstaltungen

Frauen können nicht alles haben - Männer aber schon?!

29.05.2015 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mikhael Subotzky und Patrick Waterhouse erhalten den Deutsche Börse Photography Prize 2015

29.05.2015 | Förderungen Preise

Potenzial aller Kinder erkennen

29.05.2015 | Veranstaltungsnachrichten

HDT - Sommerakademie 2015 für Entwickler und Ingenieure

29.05.2015 | Seminare Workshops