Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mehr Methan aus der Tiefe des Meeres: Schlammvulkane als Quelle des Treibhausgases Methan

11.11.2014

Der Schlammvulkan Haakon Mosby in der Barentssee vor Norwegen stößt jährlich mehrere hundert Tonnen des Treibhausgases Methan aus. Ein Forscherteam unter der Leitung des Bremer Max-Planck-Instituts berichtet jetzt über seine Langzeitbeobachtungen in der Zeitschrift NATURE Communications.

Über 431 Tage lang sammelten sie Temperatur-, Druck- und pH-Daten und dokumentierten mit einer Unterwasserkamera 25 Ausbrüche von Schlamm und Gas. Vier dieser Ausbrüche waren so gewaltig, dass sie die Unterwasserlandschaft drastisch veränderten. Anhand ihrer Daten berechneten die Wissenschaftler, dass aus dem Schlammvulkan ungefähr 10-mal mehr Gas austritt als bislang angenommen.


Schema des Schlammvulkans im Querschnitt. Mit einem Kilometer im Durchmesser erhebt sich der Schlammvulkan Haakon Mosby nur zehn Meter über das Terrain.

M. Schloesser, MPI Bremen


Die Unterwasserplattform LOOME (Long Term Observatory On Mud-volcano Eruptions) beobachtete das Geschehen am Haakon Mosby Mud Volcano über 431 Tage lang.

Dirk de Beer, MPI Bremen

An Land sind Tausende dieser Schlammvulkane bekannt; und auch im Ozean, zwischen 200 und 4000 Meter Wassertiefe, werden immer mehr solcher methanspeienden Strukturen gefunden. So der Haakon Mosby Schlammvulkan vor Norwegen.

Wissenschaftler schätzten bislang, dass Unterwasservulkane jährlich 27 Millionen Tonnen zum weltweiten Methanausstoß beitragen, das sind mehr als 5% der insgesamt 500 Millionen Tonnen. Doch könnte der Anteil auch noch höher liegen, da nicht alle Kontinentalränder vermessen sind und es keine Dauerbeobachtungsstationen im Meer gibt.

Der innere Rhythmus der Schlammvulkane
Strömen Gas und Schlamm kontinuierlich aus oder gibt es einen chaotischen Rhythmus, ähnlich wie bei einem Schluckauf? Ist es ein Fließgleichgewicht, das nur manchmal durch Eruptionen gestört wird? Im Fließgleichgewicht ändern sich die einzelnen Ströme nicht. Gas steigt kontinuierlich von unten aus dem Schlot auf, ein bestimmter Teil davon geht in die Wassersäule über, der Rest wird durch mikrobielle Prozesse im Meeresboden inaktiviert.

So ein Fließgleichgewicht können Forscher mit Sensoren gut erfassen, mit mathematischen Formeln beschreiben und Prognosen aufstellen. Eruptionen finden aber nur selten statt – um sie in der Tiefsee zu beobachten, brauchen Meeresforscher dauerhafte Observatorien. Ein solches haben die Wissenschaftler um Dirk de Beer entwickelt.

Ein biologischer Filter aus Mikroorganismen inaktiviert das Methan
Man weiß, dass ein Großteil des Methans nicht in die Atmosphäre gelangt, denn besondere methanfressende Mikroorganismen wandeln das Treibhausgas schon im Meeresboden zu Karbonat um, sofern sie ausreichende Konzentrationen an Oxidationsmittel wie Sulfat finden. Diese Mikroorganismen sind sehr langsam, denn ihre Generationszeit beträgt 3-6 Monate. Doch was passiert, wenn sie durch Eruptionen und Umwälzungen des Meeresbodens gestört würden?

Störung des Fließgleichgewichts
Strömt das Gas kontinuierlich, funktioniert dieser biologische Filter am Meeresboden gut. Bei einer Störung dieses Fließgleichgewichts, also einer Eruption, sind die Mikroorganismen schlicht überfordert und das Gas steigt fast ungehindert in die Wassersäule auf. Das passiert, wenn die austretenden Fluide sehr schnell ausströmen und die Oxidationsmittel nicht ausreichend nachfließen. Oder wenn die Eruption die Schichtung des Schlamms so durcheinandergewirbelt hat, dass der Lebensraum der methanfressenden Mikroorganismen zerstört.

Das Langzeit-Observatorium nimmt kontinuierlich Daten auf
Um zu sehen, wann und wie oft der Vulkan ausbricht, stationierten die Forscher eine Plattform mit verschiedenen physikalischen und chemischen Sensoren auf dem Haakon Mosby-Schlammvulkan in über 1200 Meter Wassertiefe. Der Vulkan deckt eine kreisförmige Fläche mit einem Kilometer im Durchmesser ab und erhebt sich nur zehn Meter über das umliegende Terrain. Er wird von eiskaltem Bodenwasser überströmt – doch je tiefer man im Meeresboden misst, desto wärmer wird es. Dr. Tomas Feseker vom MARUM Zentrum für marine Umweltwissenschaften der Universität Bremen sagt: „Wir konnten im Zentrum des Schlots in einem Meter Tiefe über 25 Grad Celsius messen, die Wärme wird durch aus der Tiefe aufsteigende gasreiche Fluide geliefert.“

Mit dem Observatorium LOOME wollten die Forscher prüfen, ob die im Meeresboden dieses Schlammvulkans befindlichen Gashydrate manchmal durch Hitzepulse aufgelöst werden und als Gas entweichen können. Sie stellten dazu im Juli 2009 ihr Observatorium nahe dem aktiven Zentrum auf und verlegten mit Hilfe des ferngesteuerten Roboters MARUM-QUEST an Bord der FS Polarstern die Kabel zu ihren Sensoren. Im Laufe des Jahres veränderte sich der Vulkan mehrmals. Die Thermometer zeigten steigende Temperaturen, Gase stiegen auf und drückten den Meeresboden um über einen Meter nach oben und um über hundert Meter zur Seite. Anschließend sank der Boden wieder langsam in sich zusammen.

10-mal mehr Methan als bisher angenommen
Dr. Dirk de Beer vom Max-Planck-Institut für Marine Mikrobiologie und wissenschaftlicher Leiter des sogenannten LOOME Observatoriums erläutert die Ergebnisse: „Diese Eruptionen werden vom aufsteigenden Gas aus tieferen Schichten des Vulkans angetrieben. Zusätzlich führt jede Eruption zu Temperaturerhöhungen an der Oberfläche und die im Schlamm gefrorenen Gashydrate gehen vom festen Zustand in den gasförmigen über. Das Methan kann in die Wassersäule aufsteigen. Unsere Berechnungen zeigen, dass ungefähr 10-mal mehr Methan austritt als bisher angenommen. Ein Großteil dieses im Wasser gelösten Gases erreicht die Atmosphäre aber nicht, sondern wird beim Aufstieg im Meerwasser verteilt und schließlich von Bakterien aufgezehrt.“

Die Forscher haben zehn Jahre alte Meeresboden-Karten des Forschungsgebiets mit heutigen Befunden verglichen und festgestellt, dass sich die Gestalt des Meeresbodens deutlich verändert hat durch Sedimentverschiebungen. Diese horizontale Bewegungen konnten die Forscher genau rekonstruieren, denn ihre tonnenschwere Temperatur-Messlanze legte im Laufe des Jahres eine Strecke von 165 Metern zurück. Überraschend war, dass bei den Eruptionen der Vulkan an den Rändern nicht überlief. Das bedeutet, dass der Schlamm wieder in den Vulkan zurückgelaufen sein muss.

Eine wichtige Erkenntnis dieser Studie ist, dass die Eruptionen den biologischen Filter im Meeresboden schädigen, der das meiste Methan des Haakon Mosby Schlammvulkans zurückhält. Prof. Dr. Antje Boetius, Fahrtleiterin der Expeditionen und Mitautorin der Studie, sagt: „Wir haben durch die erstmals ganzjährige Beobachtung des Schlammvulkans viel über sein Verhalten und den Einfluss auf die Umwelt gelernt. Da Eruptionen solcher Schlammvulkane an Land wie im Meer erhebliche Schlammrutschungen verursachen können und eine erhebliche Quelle von Gas sind, sollte es mehr Dauerbeobachtungsstationen für sie geben.“

Manfred Schlösser

Rückfragen an
Dr. Dirk de Beer, Max-Planck-Institut für Marine Mikrobiologie, Tel. +49 421 2028 802,
dbeer@mpi-bremen.de

Dr. Tomas Feseker, MARUM-Zentrum für marine Umweltwissenschaften Fachbereich Geowissenschaften der Universität Bremen ; feseker@uni-bremen.de

Prof. Dr. Antje Boetius, HGF-MPG Brückengruppe für Tiefseeökologie und –Technologie. Alfred –Wegener-Institut Helmholtz Zentrum für Polar und Meeresforschung und Max-Planck-Institut für Marine Mikrobiologie, Tel. +49 421 2028 860, antje.boetius@awi.de

Oder an den Pressesprecher
Dr. Manfred Schloesser, Max-Planck-Institut für Marine Mikrobiologie, Tel.: 0421 2028704, mschloes@mpi-bremen.de,
Originalartikel:
Eruption of a deep-sea mud volcano triggers rapid sediment movement
Tomas Feseker, Antje Boetius, Frank Wenzhöfer, Jerome Blandin, Karine Olu, Dana R. Yoerger, Richard Camilli, Christopher R. German, Dirk de Beer.
Nature Communications, November 2014, DOI: NCOMMS6385

Beteiligte Institute
Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
MARUM - Center for Marine Environmental Sciences and Faculty of Geosciences, University of Bremen, 28359 Bremen, Germany
GEOMAR, Helmholtz Centre for Ocean Research Kiel, 24148 Kiel, Germany
HGF-MPG Group for Deep Sea Ecology and Technology, Alfred Wegener Institute for Polar and Marine Research in the Helmholtz Association, 27515 Bremerhaven, Germany
IFREMER, Institut Carnot EDROME, RDT/ SI2M F-29280 Plouzané, France
IFREMER, Institut Carnot EDROME, REM/EEP, Laboratoire Environnement Profond, F-29280 Plouzané, France
Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA

Danksagung: Das Projekt LOOME war Teil des Europäischen Programmes ESONET und von ihm gefördert, weitere Förderer sind die Helmholtz Gemeinschaft, die Max-Planck-Gesellschaft und das Leibniz-Programm der DFG.


Weitere Informationen:

http://Links:
http://www.mpi-bremen.de/Forschung_am_Tiefsee-Schlammvulkan_Haakon_Mosby.html
http://www.esonet-emso.org/  (Webseite Europäischer Meeresboden Observatorien)

Dr. Manfred Schloesser | Max-Planck-Institut

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen
26.04.2017 | Leibniz-Institut für Troposphärenforschung e. V.

nachricht Flechten aus dem Bernsteinwald
25.04.2017 | Georg-August-Universität Göttingen

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie