Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Massives Waldsterben vor 200 Millionen Jahren

16.07.2009
Heftige Vulkanausbrüche am Übergang von Trias zum Jura ließen Wälder auf der nördlichen Halbkugel vorübergehend kollabieren. Frankfurter Geopaläontologen fanden jetzt zusammen mit schwedischen und amerikanischen Kollegen die Ursache: sauerer Regen.

Das Massensterben von Tieren und Pflanzen vor 200 Millionen Jahren an der Trias-Jura-Grenze, als die Zeit der Dinosaurier begann, ist eines der fünf großen Aussterbe-Ereignisse der Erdgeschichte. In den Ozeanen fielen ihm bis zu 80 Prozent aller Weichtiere zum Opfer.

Paläontologen erklären dies durch den Ausstoß großer Mengen an Kohlendioxid (CO2) bei Vulkanausbrüchen, welche die Bildung des heutigen Atlantischen Ozeans (und damit die Trennung von Europa und Nordamerika) einleiteten. Rätselhaft war bis heute, warum gleichzeitig auch Ökosysteme auf den Kontinenten kollabierten. Forscher der Goethe-Universität haben nun mit Kollegen aus Schweden und den Vereinigten Staaten herausgefunden, dass durch den Vulkanismus zusätzlich große Mengen an Schwefeldioxid freigesetzt wurden, die als saurer Regen ausfielen und damit in Analogie zum heutigen Waldsterben für den vorübergehenden Zusammenbruch der Wälder sorgten.

Im Frühstadium der Atlantik-Öffnung bildete sich entlang der späteren Bruchzone zwischen Europa und Nordamerika eine Vulkanprovinz, die gewaltige Mengen an Basaltlava ausstieß. Die produzierte Lavamenge war so groß, dass sie die gesamte Fläche der heutigen USA unter einer 300 Meter dicken Schicht begraben würde. Das zeitgleiche Verschwinden von vielen Kalkskelette bildenden Organismen im Meer, wie zum Beispiel den Korallen, lässt sich durch den Ausstoß von vulkanischem CO2 erklären. Die massiven Änderungen in terrestrischen Ökosystemen - und hier besonders der Landpflanzengemeinschaften - an der Trias-Jura-Grenze sind dagegen nicht direkt mit erhöhter CO2-Konzentration in der Atmosphäre erklärbar. "Die Beobachtung, dass das kurzfristige Verschwinden der Wälder auf die Nordhemisphäre beschränkt ist, lässt sich durch eine Zunahme der atmosphärischen CO2-Konzentration nicht erklären", so Prof. Jörg Pross, Paläontologe und Paläoklimaforscher an der Goethe-Universität.

Um herauszufinden, wie sich die Landvegetation an der Trias-Jura-Grenze veränderte, untersuchten der Frankfurter Paläontologe Dr. Bas van de Schootbrugge und Kollegen fossile Pollen und Sporen in Bohrkernen aus Deutschland und Schweden. Wie sie in der Online-Ausgabe der Fachzeitschrift "Nature Geoscience" berichten, konnten sie so an der Trias-Jura-Grenze ein rasantes Wachstum von Farnen, Schachtelhalmen und Moosen identifizieren, welche die vorher existierenden Wälder kurzfristig ersetzten. Diese Pioniere besiedeln rasch offene Landschaften und können auch unter schwierigen Umweltbedingungen auf sauren Böden und mit wenig Licht überleben. "Eine derartige Vegetation ist typisch für schwer gestörte Ökosysteme", erklärt van de Schootbrugge.

Die Forscher erklären das Waldsterben als Folge massiven sauren Regens, der zu einer Versauerung der Böden auf der Nordhemisphäre führte - mit dramatischen Folgen für Nadelbäume und andere Baumarten. Zusätzlich sorgten große Mengen an Sulfat-Aerosolen in der Atmosphäre für eine Verringerung des auf dem Erdboden ankommenden Sonnenlichts. Farne sind unter derartigen Bedingungen im Vorteil - was die große Menge an gefundenen Farnsporen erklärt. Als weiteren Bestandteil der Atmosphäre an der Trias-Jura-Grenze identifizierten die Paläontologen um van de Schootbrugge erhöhte Konzentrationen organischer Moleküle, insbesondere Polyzyklischer Aromatischer Kohlenwasserstoffe (PAKs). Diese deuten auf einen direkten Zusammenhang zwischen Florenwechsel und Vulkanismus an der Trias-Jura-Grenze: Die für Tiere und Pflanzen hoch toxischen PAKs werden nämlich freigesetzt, wenn Lava durch die Erdkruste aufsteigt und dabei organisch reiche Sedimente wie etwa Kohleflöze aufheizt und verschwelt.

Informationen: Dr. Bas van de Schootbrugge, Facheinheit Paläontologie, Institut für Geowissenschaften, Goethe-Universität Frankfurt, Tel.: (069) 798-40178; van.de.Schootbrugge@em.uni-frankfurt.de

Die Goethe-Universität ist eine forschungsstarke Hochschule in der europäischen Finanzmetropole Frankfurt am Main. 1914 von Frankfurter Bürgern gegründet, ist sie heute eine der zehn größten Universitäten Deutschlands. Am 1. Januar 2008 gewann sie mit der Rückkehr zu ihren historischen Wurzeln als Stiftungsuniversität ein einzigartiges Maß an Eigenständigkeit. Rund um das historische Poelzig-Ensemble im Frankfurter Westend entsteht derzeit für rund 600 Millionen Euro der schönste Campus Deutschlands. Mit über 50 seit 2000 eingeworbenen Stiftungs- und Stiftungsgastprofessuren nimmt die Goethe-Universität den deutschen Spitzenplatz ein. In drei Forschungsrankings des CHE in Folge und in der Exzellenzinitiative zeigte sie sich als eine der forschungsstärksten Hochschulen.

Herausgeber:
Der Präsident
Abteilung Marketing und Kommunikation, Postfach 11 19 32,
60054 Frankfurt am Main
Redaktion:
Dr. Anne Hardy, Referentin für Wissenschaftskommunikation
Telefon (069) 798 - 2 92 28, Telefax (069) 798 - 2 85 30,
E-Mail hardy@pvw.uni-frankfurt.de

Dr. Anne Hardy | idw
Weitere Informationen:
http://www.uni-frankfurt.de

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Der Salzwasser-Wächter auf der Darßer Schwelle
19.09.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Zeppelin, Drohnen und Forschungsschiffe untersuchen Wattenmeer und Elbe
19.09.2017 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik