Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Massive crevasses and bendable ice affect stability of Antarctic ice shelf, CU research team finds

10.12.2012
Gaping crevasses that penetrate upward from the bottom of the largest remaining ice shelf on the Antarctic Peninsula make it more susceptible to collapse, according to University of Colorado Boulder researchers who spent the last four Southern Hemisphere summers studying the massive floating sheet of ice that covers an area twice the size of Massachusetts.

But the scientists also found that ribbons running through the Larsen C Ice Shelf – made up of a mixture of ice types that, together, are more prone to bending than breaking – make the shelf more resilient than it otherwise would be.

The research team from CU-Boulder's Cooperative Institute for Research in the Environmental Sciences presented the findings Dec. 6 at the American Geophysical Union's annual meeting in San Francisco.

The Larsen C Ice Shelf is all that's left of a series of ice shelves that once clung to the eastern edge of the Antarctic Peninsula and stretched into the Weddell Sea. When the other shelves disintegrated abruptly – including Larsen A in January 1995 and Larsen B in February 2002 – scientists were surprised by the speed of the breakup.

Researchers now believe that the catastrophic collapses of Larsen A and B were caused, at least in part, by rising temperatures in the region, where warming is increasing at six times the global average. The Antarctic Peninsula warmed 4.5 degrees Fahrenheit since the middle of the last century.

The warmer climate increased meltwater production, allowing more liquid to pool on top of the ice shelves. The water then drained into surface crevasses, wedging them open and cracking the shelf into individual icebergs, which resulted in rapid disintegration.

But while the meltwater may have been responsible for dealing the final blow to the shelves, researchers did not have the opportunity to study how the structure of the Larsen A and B shelves may have made them more vulnerable to drastic breakups – or protected the shelves from an even earlier demise.

CU-Boulder researchers did not want to miss the same opportunity on the Larsen C shelf, which covers more than 22,000 square miles of sea.

"It's the perfect natural laboratory," said Daniel McGrath, a doctoral student in the Department of Geography and part of the CIRES research team. "We wanted to study this shelf while it's still stable in order to get a better understanding of the processes that affect ice shelf stability."

McGrath worked with CIRES colleagues over the last four years to study the Larsen C shelf in order to better understand how the warming climate may have interacted with the shelf's existing structure to increase its vulnerability to a catastrophic collapse.

McGrath presented two of the group's key findings at the AGU meeting. The first was the role that long-existing crevasses that start at the base of the shelf and propagate upward – known as basal crevasses – play in making the shelf more vulnerable to disintegration. The second relates to the way a type of ice found in areas called suture zones may be protecting the shelf against a breakup.

The scientists used ground penetrating radar to map out the basal crevasses, which turn out to be massive. The yawning cracks can run for several miles in length and can penetrate upwards for more than 750 feet. While the basal crevasses have been a part of Larsen C for hundreds of years, the interaction between these features and a warming climate will likely make the shelf more susceptible to future disintegration. "They likely play a really important role in ice-shelf disintegration, both past and future," McGrath said.

The research team also studied the impact of suture zones in the ice shelf. Larsen C is fed by 12 distinct glaciers, which dump a steady flow of thick ice into the shelf. But the promontories of land between the glacial outlets, where ice does not flow into the shelf, allow for the creation of ribbon-like suture zones, which knit the glacial inflows together and which turn out to be important to the ice shelf's resilience. "The ice in these zones really holds the neighboring inflows together," McGrath said.

The suture zones get their malleable characteristic from a combination of ice types. A key component of the suture zone mixture is formed when the bottoms of the 12 glacial inflows begin to melt. The resulting freshwater is more buoyant than the surrounding seawater, so it rises upward to the relatively thinner ice zones between the glacial inflows, where it refreezes on the underside of the shelf and contributes to the chaotic ice structure that makes suture zones more flexible than the surrounding ice.

It turns out that the resilient characteristics of the suture zones keep cracks, including the basal crevasses, from spreading across the ice shelf, even where the suture zone ice makes up a comparatively small amount of the total thickness of the shelf. The CIRES team found that at the shelf front, where the ice meets the open sea, suture zone ice constitutes only 20 percent of the total thickness of the shelf but was still able to limit the spread of rifts through the ice. "It's a pretty small part of the total ice thickness, and yet, it still has this really important role of holding the ice shelf together," McGrath said.

Other CU researchers involved in the Larsen C project were Konrad Steffen, former director of CIRES; Ted Scambos, of CIRES and CU-Boulder's National Snow and Ice Data Center; Harihar Rajaram, of the Department of Civil Engineering; and Waleed Abdalati, of CIRES.

CIRES is a joint institute of CU-Boulder and the National Oceanic and Atmospheric Administration.

Contact:

Dan McGrath
Daniel.McGrath@colorado.edu
Laura Snider, CU media relations, 303-735-0528
Laura.Snider@colorado.edu

Dan McGrath | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Earth Sciences:

nachricht Successful: Cement on Top of Carbon Dioxide
06.07.2015 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

nachricht NASA sees heavy rain in Tropical Cyclone Chan-Hom
02.07.2015 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Windturbinen unter Brücken sind sinnvoll

Ansatz für dicht verbaute oder schützenswerte Gebiete attraktiv

Laut einem spanisch-britischen Forscherteam wäre es sinnvoll, unter großen Brücken Windturbinen zur Stromgewinnung zu verbauen. Denn Modellrechnungen am...

Im Focus: Forschungsschiff Heincke seit 25 Jahren im Dienst der Wissenschaft

Ein Vierteljahrhundert alt, über 900.000 Kilometer (488.842 nautische Meilen) gefahren und trotzdem auf dem neuesten wissenschaftlichen und technischen Stand: Die Indienststellung des Forschungsschiffes Heincke jährt sich am 8. Juli 2015 zum 25. Mal.

Wissenschaftler des Alfred-Wegener-Instituts, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI), das die Heincke betreibt, nehmen ebenso regelmäßig an...

Im Focus: Solardächer produzieren Strom für Fahrzeuge

Studentische Industriekooperation zwischen HAW Hamburg und Webasto erarbeitet Ergebnisse für EU-Zertifizierungsprozess von Solardächern zur Verbesserung der Öko-Bilanz von Fahrzeugen.

Unter der Leitung von Dr.-Ing. Volker Skwarek, Professor für technische Informatik an der HAW Hamburg, erarbeiteten sechs Studierende des...

Im Focus: Viaducts with wind turbines, the new renewable energy source

Wind turbines could be installed under some of the biggest bridges on the road network to produce electricity. So it is confirmed by calculations carried out by a European researchers team, that have taken a viaduct in the Canary Islands as a reference. This concept could be applied in heavily built-up territories or natural areas with new constructions limitations.

The Juncal Viaduct, in Gran Canaria, has served as a reference for Spanish and British researchers to verify that the wind blowing between the pillars on this...

Im Focus: Aus alt mach neu - Rohstoffquelle Elektroschrott

Der Markt für Unterhaltungselektronik boomt: Rund 60 Millionen Fernsehgeräte wurden im letzten Jahr in Europa verkauft. Früher oder später werden sie zurückkehren – als Elektroschrott.

Die Recycling-Industrie hat darauf reagiert: Kupfer, Aluminium, Eisen- und Edelmetalle sowie ausgewählte Kunststoffe werden bereits wiederverwertet. Allerdings...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

IMTC 2015: Internationale Fachtagung im Kompetenzfeld Leichtbau

06.07.2015 | Veranstaltungen

Rheumatologen tagen in Bremen: Fortschritte in der Rheuma-Therapie und neue Impfempfehlungen

06.07.2015 | Veranstaltungen

9. Aachener Technologie- und Innovationsmanagement-Tagung

06.07.2015 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Streik der zellulären Müllabfuhr

06.07.2015 | Biowissenschaften Chemie

Proteintransport in die zellulären Kraftwerke

06.07.2015 | Förderungen Preise

67 Siemens-Windturbinen und Langzeit-Wartung für Offshore-Projekt Veja Mate

06.07.2015 | Unternehmensmeldung