Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mainzer Wissenschaftler entwickeln neuen Bodenfeuchtesensor

11.09.2015

Innovatives Messgerät ermöglicht erstmals, den Wassergehalt biologischer Bodenkrusten zu messen

Biologische Bodenkrusten aus Flechten Algen und Moosen nehmen eine wichtige Rolle in Ökosystemen der Erde ein. Sie fixieren große Mengen Kohlendioxid und Stickstoff und geben gleichzeitig bedeutende Mengen des Treibhausgases Lachgas ab.


Das Gelände, auf dem die Bodenfeuchtesensoren in Klimastationen installiert sind, wird mithilfe eines Zaunes vor weidenden Tieren geschützt.

Bettina Weber, MPI für Chemie


Der neu entwickelte Bodenfeuchtesensor im Einsatz in einer durch Flechten dominierten Bodenkruste in der Sukkulentenkaroo, einer Halbwüste in Südafrika.

Bettina Weber, MPI für Chemie

Um ihre Fixierungs- und Freisetzungsprozesse im Detail untersuchen und verstehen zu können, sind Informationen zur Bodenfeuchtigkeit von entscheidender Bedeutung. Bisher jedoch existierte kein Sensor, der den Wassergehalt in den obersten Millimetern des Bodens mit ausreichender Genauigkeit ermitteln kann.

Diese Lücke schließt nun eine Neuentwicklung von Bettina Weber und Kollegen am Max-Planck-Institut für Chemie in Mainz, wie online in der „Early View“ Ausgabe des Journals „Methods in Ecology and Evolution“ der Wiley Online Bibliothek zu lesen ist. Sie schafften es, einen entsprechenden Bodenfeuchtesensor zu konstruieren, der verlässliche Daten liefert und darüber hinaus kostengünstig und flexibel in der Anwendung ist.

Bisher behalfen sich Wissenschaftler bei Untersuchungen der obersten Bodenschicht mit nur mäßig geeigneten Methoden, um zumindest näherungsweise deren Wassergehalt zu bestimmen. „Der einzige Sensor, der in den obersten Schichten zurzeit einsetzbar ist, misst lediglich, ob die Organismen aktiv sind, nicht aber die vorhandene Menge an Wasser. Alle anderen Bodenfeuchtesensoren messen den Wassergehalt in tieferen Schichten, so dass sie für die Anwendung in Bodenkrusten völlig ungeeignet sind“, beschreibt Bettina Weber, Gruppenleiterin in der Abteilung Multiphasenchemie, die Problematik.

Da aber die Feuchtigkeit des Bodens in den obersten fünf Millimetern ausschlaggebend für die Aktivität, Produktivität und Oberflächenaustauschrate wechselfeuchter Lebewesen ist, versuchte Bettina Weber diese Unbekannte bei ihren Messungen durch eigene Entwicklungen zu entschlüsseln. Gemeinsam mit ihrem Forschungsteam fand sie eine Methode, um die Bodenfeuchtigkeit anhand seiner Leitfähigkeit bestimmen zu können. Das Kernstück des Messgeräts ist daher ein Leitfähigkeitssensor.

Die größte Herausforderung bereitete die Kalibrierung der Sensoren: Da die Leitfähigkeit des Bodens nicht nur durch die Feuchtigkeit, sondern u. a. durch die Körnigkeit und den Salzgehalt des Bodens beeinflusst wird, muss der Sensors stets innerhalb des gemessenen Substrats kalibriert werden. Erst nach zahlreichen Anläufen konnten die Forscher eine zuverlässige Methode entwickeln, mit der sie die Leitfähigkeitswerte den entsprechenden Wassergehaltswerten zuordnen konnten.

„Da es recht aufwendig ist, im Anschluss an die Feldmessungen Kalibrationskurven im Labor zu erstellen, haben wir auch eine Methode entwickelt, eine Kalibrationskurve mit etwas geringerer Genauigkeit anhand weniger Feldmessungen zu erstellen“, erklärt Thomas Berkemeier, Doktorand in der Abteilung Multiphasenchemie, der das mathematische Verfahren zur Berechnung der Kalibrationskurven entwickelte.

Insgesamt überzeugt die Neuentwicklung der Mainzer Forscher durch zahlreiche Vorteile: Zum einen kann der Sensor aufgrund seines einfachen Aufbaus und einer robusten Konstruktion universell in den verschiedensten Böden der Erde eingesetzt werden. Zum anderen ist es dank der geringen Anschaffungskosten möglich, zahlreiche Sensoren gleichzeitig einzusetzen, um so auch kleinräumige Muster und Abhängigkeiten statistisch zuverlässig erfassen zu können, was bisher nicht möglich war.

Die neu entwickelten Bodenfeuchtesensoren können mit einfachen Änderungen für Messungen über größere Bodenbereiche hinweg angepasst werden. Sie sind somit potenziell nicht nur für Forschungsprojekte an biologischen Bodenkrusten interessant, sondern auch beispielsweise für industrielle Anwendungen wie bei der Verarbeitung von Beton.

Ihre Erfindung haben sich die Max-Planck-Wissenschaftler schützen lassen und den Feuchtesensor als Gebrauchsmuster angemeldet. Zurzeit arbeitet Bettina Weber bereits an einer Weiterentwicklung des Sensors, um ihn auch für den Betrieb in Sensornetzwerken einsatzfähig zu machen. AR

Originalpublikation
B. Weber, Th. Berkemeier, N. Ruckteschler, J. Caesar, H. Heintz, H. Ritter, H. Braß: “Development and calibration of a novel sensor to quantify the water content of surface soils and biological soil crusts”, Methods in Ecology and Evolution (2015), doi: 10.1111/2041-210X.12459

Kontakt
PD Dr. Bettina Weber
Max-Planck-Institut für Chemie
Abteilung Multiphasenchemie
55128 Mainz
E-Mail: b.weber@mpic.de

Zusatzinfo biologische Bodenkrusten:
Biologische Bodenkrusten bestehen aus einer Gemeinschaft von Blaualgen, Flechten, Algen und Moosen, die gemeinsam mit Pilzen, Bakterien und Archaeen in den oberen drei bis fünf Millimetern des Bodens wachsen und hier eine verhärtete Schicht bilden. Sie kommen weltweit in Trockengebieten der Erde vor und besiedeln hier ungefähr 20 Mio. Quadratkilometer, was annähernd der Fläche von Südamerika entspricht. Sämtliche Organismen in Bodenkrusten sind wechselfeuchter Natur, was bedeutet, dass sie nur bei ausreichender Feuchte des Bodens aktiv sind, trockene Bedingungen aber in einem inaktiven Zustand überdauern.

Weitere Informationen:

http://www.mpic.de/aktuelles/pressemeldungen/news/mainzer-wissenschaftler-entwic...

Dr. Susanne Benner | Max-Planck-Institut für Chemie

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Rest-Spannung trotz Megabeben
13.12.2017 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

nachricht Winzige Weltenbummler: In Arktis und Antarktis leben die gleichen Bakterien
13.12.2017 | Eberhard Karls Universität Tübingen

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rest-Spannung trotz Megabeben

13.12.2017 | Geowissenschaften

Computermodell weist den Weg zu effektiven Kombinationstherapien bei Darmkrebs

13.12.2017 | Medizin Gesundheit

Winzige Weltenbummler: In Arktis und Antarktis leben die gleichen Bakterien

13.12.2017 | Geowissenschaften