Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Magnetfeld, Mantelkonvektion und Tektonik

30.07.2012
Zusammenhang von Magnetfeld, Mantelkonvektion und magnetischen Umpolungen

Das Erdmagnetfeld wird auf einer Zeitskala von zehn bis hundert Millionen von Jahren möglicherweise von Strömungen im Erdmantel beeinflusst. Auch die in der Erdgeschichte häufig geschehenen Umpolungen des Erdmagnetfeldes lassen sich mit Prozessen im Erdmantel verbinden.


Berechnete gegenwärtige Wärmestromverteilung an der Kern-Mantel-Grenze


Einfluss von Subduktionsvorgängen auf die Verteilung des Wärmestroms

Dieses Forschungsergebnis präsentiert eine Gruppe von Geowissenschaftlern in der neuen Vorab-Ausgabe von „Nature Geoscience“ am Sonntag, dem 29. Juli. Es werden Ergebnisse vorgestellt, wie die raschen Prozesse im äußeren Erdkern, die mit Strömungsgeschwindigkeiten von bis zu etwa einem Millimeter pro Sekunde ablaufen, mit den Abläufen im Erdmantel gekoppelt sind, die sich eher im Geschwindigkeitsbereich von Zentimetern pro Jahr abspielen.

Die internationale Wissenschaftlergruppe unter Leitung von A. Biggin von der Universität Liverpool umfasste Mitglieder des Deutschen GeoForschungsZentrums GFZ, des IPGP Paris und der Universitäten von Oslo und Utrecht sowie weitere Partner.

Bekanntlich entsteht das Erdmagnetfeld durch Konvektionsströmungen in einem elektrisch leitfähigen Eisen-Nickelgemisch im flüssigen Erdkern, rund 3000 Kilometer unter der Erdoberfläche. Das Erdmagnetfeld ist hochvariabel, Veränderungen des Erdmagnetfeldes gibt es auf einer Vielzahl von Raum- und Zeitskalen. Über dem flüssigen äußeren Erdkern befindet sich der Erdmantel, dessen Gestein aufgrund der großen Hitze und des hohen Drucks sich plastisch verformbar verhält.

An der Grenze zwischen Erdkern und Erdmantel in 2900 Kilometern Tiefe findet ein intensiver Wärmeaustausch statt, der einerseits aus dem Erdkern in den Mantel gerichtet ist. Andererseits beeinflussen Prozesse im Erdmantel wiederum diesen Wärmefluss. Die interessante Frage ist, wie die viel langsameren Strömungen im festen Erdmantel den Wärmestrom und dessen räumliche Verteilung an der Kern-Mantel-Grenze bestimmen, und inwieweit dadurch das Erdmagnetfeld beeinflusst wird, das aufgrund viel schnellerer Strömungen im Erdkern entsteht.

Schlüsselgröße Wärmetransport
„Die Schlüsselgröße ist der Wärmefluss. Ein kühlerer Erdmantel beschleunigt den Wärmefluss aus dem heißen Erdkern und verändert dadurch die ebenfalls wärmegetriebenen Konvektionsströmungen im Erdkern“, erläutert Bernhard Steinberger vom Deutschen GeoForschungsZentrum GFZ. „Aufgrund tektonischer Prozesse in den Mantel absinkende Ozeanböden können zur Abkühlung im Mantel führen. Sie erzeugen an diesen Stellen einen erhöhten Wärmestrom in die kühleren Stellen hinein, und zwar so lange, bis sie zur Umgebungstemperatur aufgeheizt wurden.“ Das kann allerdings schon mehrere Hundert Millionen Jahre dauern.
Umgekehrt führt der heiße Erdkern auch zum Aufsteigen von erhitztem Gestein in großen Blasen, so genannten Mantelplumes, die sich von der Kern-Mantel-Grenze ablösen und sich bis zur Erdoberfläche durchsetzen, Hawaii ist so entstanden. Das erhöht lokal den Wärmestrom aus dem Erdkern heraus und modifiziert so wiederum den Generator des Erdmagnetfeldes.

Umpolungen des Magnetfeldes
In der Erdgeschichte sind Umpolungen des Erdmagnetfeldes nichts Außergewöhnliches, die letzte fand erst vor nur 780 000 Jahren statt, ein – geologisch gesehen – recht kurzer Zeitraum. Die Forschergruppe konnte feststellen, dass im Zeitraum von 200 bis 80 Millionen Jahren vor heute es anfänglich noch häufiger zu Umpolungen kam, nämlich bis zu zehn mal pro hundert Millionen Jahren. „Überraschenderweise stoppten diese Umpolungen vor etwa 120 Millionen Jahren und blieben fast 40 Millionen Jahre aus“ erläutert GFZ-Wissenschaftler Sachs.

Als Grund vermuten die Wissenschaftler eine gleichzeitig stattfindende Umorientierung des gesamten Mantels und der Erdkruste mit einer Verlagerung der geographischen und magnetischen Pole von etwa 30°. Diese als "echte Polwanderungen" bezeichneten Prozesse haben ihre Ursache in einer veränderten Dichteverteilung im Erdmantel. Wenn sich dadurch der Wärmefluss in äquatorialen Gebieten erhöht, führt dies vermutlich zu häufigerer Feldumkehr, wenn er sich verringert, kann die Feldumkehr möglicherweise ausbleiben.

Blick in die Zukunft

Nach gegenwärtigem Wissenstand scheint demnach ein Einfluß der Plattentektonik und Mantelkonvektion auf das Erdmagnetfeld sehr wohl möglich. Der Beitrag zeigt aber auch auf, welche zukünftigen Forschungen noch notwendig sind, um diese Zusammenhänge besser zu verstehen. Insbesondere sollte versucht werden, aus paläomagnetischen Daten weitere Episoden von „echten Polwanderungen“ abzuleiten, und festzustellen, ob diese üblicherweise mit verändertem Verhalten des Magnetfeldes (z.B. Häufigkeit der Feldumkehr) assoziiert sind. Auch sollten künftige Modelle zur Erzeugung des Erdmagnetfeldes den Einfluß der räumlichen und zeitliche Variation des Wärmestroms an der Kern-Mantelgrenze noch genauer untersuchen.

J. Biggin et al., “Possible links between long-term geomagnetic variations and whole-mantle convection processes”, Nature Geoscience, Vol. 5, August 2012, doi:10.1038/NGEO1521
Abb. in druckfähiger Auflösung und eine Animation finden sich unter:
http://www.gfz-potsdam.de/portal/gfz/Public+Relations/M40-Bildarchiv/Magnetfeld_Waermefluss

Kontakt: Dr. Bernhard Steinberger, GFZ, +49-331-288 1881

Franz Ossing | GFZ Potsdam
Weitere Informationen:
http://www.gfz-potsdam.de

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Wetteranomalien verstärken Meereisschwund
16.01.2018 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Material löst sich dynamisch statt kontinuierlich
16.01.2018 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: Erstmalige präzise Messung der effektiven Ladung eines einzelnen Moleküls

Zum ersten Mal ist es Forschenden gelungen, die effektive elektrische Ladung eines einzelnen Moleküls in Lösung präzise zu messen. Dieser fundamentale Fortschritt einer vom SNF unterstützten Professorin könnte den Weg für die Entwicklung neuartiger medizinischer Diagnosegeräte ebnen.

Die elektrische Ladung ist eine der Kerneigenschaften, mit denen Moleküle miteinander in Wechselwirkung treten. Das Leben selber wäre ohne diese Eigenschaft...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - März 2018

17.01.2018 | Veranstaltungen

2. Hannoverscher Datenschutztag: Neuer Datenschutz im Mai – Viele Unternehmen nicht vorbereitet!

16.01.2018 | Veranstaltungen

Fachtagung analytica conference 2018

15.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Projekt "HorseVetMed": Forscher entwickeln innovatives Sensorsystem zur Tierdiagnostik

17.01.2018 | Agrar- Forstwissenschaften

Seltsames Verhalten eines Sterns offenbart Schwarzes Loch, das sich in riesigem Sternhaufen verbirgt

17.01.2018 | Physik Astronomie

Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

17.01.2018 | Physik Astronomie