Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Magnetfeld, Mantelkonvektion und Tektonik

30.07.2012
Zusammenhang von Magnetfeld, Mantelkonvektion und magnetischen Umpolungen

Das Erdmagnetfeld wird auf einer Zeitskala von zehn bis hundert Millionen von Jahren möglicherweise von Strömungen im Erdmantel beeinflusst. Auch die in der Erdgeschichte häufig geschehenen Umpolungen des Erdmagnetfeldes lassen sich mit Prozessen im Erdmantel verbinden.


Berechnete gegenwärtige Wärmestromverteilung an der Kern-Mantel-Grenze


Einfluss von Subduktionsvorgängen auf die Verteilung des Wärmestroms

Dieses Forschungsergebnis präsentiert eine Gruppe von Geowissenschaftlern in der neuen Vorab-Ausgabe von „Nature Geoscience“ am Sonntag, dem 29. Juli. Es werden Ergebnisse vorgestellt, wie die raschen Prozesse im äußeren Erdkern, die mit Strömungsgeschwindigkeiten von bis zu etwa einem Millimeter pro Sekunde ablaufen, mit den Abläufen im Erdmantel gekoppelt sind, die sich eher im Geschwindigkeitsbereich von Zentimetern pro Jahr abspielen.

Die internationale Wissenschaftlergruppe unter Leitung von A. Biggin von der Universität Liverpool umfasste Mitglieder des Deutschen GeoForschungsZentrums GFZ, des IPGP Paris und der Universitäten von Oslo und Utrecht sowie weitere Partner.

Bekanntlich entsteht das Erdmagnetfeld durch Konvektionsströmungen in einem elektrisch leitfähigen Eisen-Nickelgemisch im flüssigen Erdkern, rund 3000 Kilometer unter der Erdoberfläche. Das Erdmagnetfeld ist hochvariabel, Veränderungen des Erdmagnetfeldes gibt es auf einer Vielzahl von Raum- und Zeitskalen. Über dem flüssigen äußeren Erdkern befindet sich der Erdmantel, dessen Gestein aufgrund der großen Hitze und des hohen Drucks sich plastisch verformbar verhält.

An der Grenze zwischen Erdkern und Erdmantel in 2900 Kilometern Tiefe findet ein intensiver Wärmeaustausch statt, der einerseits aus dem Erdkern in den Mantel gerichtet ist. Andererseits beeinflussen Prozesse im Erdmantel wiederum diesen Wärmefluss. Die interessante Frage ist, wie die viel langsameren Strömungen im festen Erdmantel den Wärmestrom und dessen räumliche Verteilung an der Kern-Mantel-Grenze bestimmen, und inwieweit dadurch das Erdmagnetfeld beeinflusst wird, das aufgrund viel schnellerer Strömungen im Erdkern entsteht.

Schlüsselgröße Wärmetransport
„Die Schlüsselgröße ist der Wärmefluss. Ein kühlerer Erdmantel beschleunigt den Wärmefluss aus dem heißen Erdkern und verändert dadurch die ebenfalls wärmegetriebenen Konvektionsströmungen im Erdkern“, erläutert Bernhard Steinberger vom Deutschen GeoForschungsZentrum GFZ. „Aufgrund tektonischer Prozesse in den Mantel absinkende Ozeanböden können zur Abkühlung im Mantel führen. Sie erzeugen an diesen Stellen einen erhöhten Wärmestrom in die kühleren Stellen hinein, und zwar so lange, bis sie zur Umgebungstemperatur aufgeheizt wurden.“ Das kann allerdings schon mehrere Hundert Millionen Jahre dauern.
Umgekehrt führt der heiße Erdkern auch zum Aufsteigen von erhitztem Gestein in großen Blasen, so genannten Mantelplumes, die sich von der Kern-Mantel-Grenze ablösen und sich bis zur Erdoberfläche durchsetzen, Hawaii ist so entstanden. Das erhöht lokal den Wärmestrom aus dem Erdkern heraus und modifiziert so wiederum den Generator des Erdmagnetfeldes.

Umpolungen des Magnetfeldes
In der Erdgeschichte sind Umpolungen des Erdmagnetfeldes nichts Außergewöhnliches, die letzte fand erst vor nur 780 000 Jahren statt, ein – geologisch gesehen – recht kurzer Zeitraum. Die Forschergruppe konnte feststellen, dass im Zeitraum von 200 bis 80 Millionen Jahren vor heute es anfänglich noch häufiger zu Umpolungen kam, nämlich bis zu zehn mal pro hundert Millionen Jahren. „Überraschenderweise stoppten diese Umpolungen vor etwa 120 Millionen Jahren und blieben fast 40 Millionen Jahre aus“ erläutert GFZ-Wissenschaftler Sachs.

Als Grund vermuten die Wissenschaftler eine gleichzeitig stattfindende Umorientierung des gesamten Mantels und der Erdkruste mit einer Verlagerung der geographischen und magnetischen Pole von etwa 30°. Diese als "echte Polwanderungen" bezeichneten Prozesse haben ihre Ursache in einer veränderten Dichteverteilung im Erdmantel. Wenn sich dadurch der Wärmefluss in äquatorialen Gebieten erhöht, führt dies vermutlich zu häufigerer Feldumkehr, wenn er sich verringert, kann die Feldumkehr möglicherweise ausbleiben.

Blick in die Zukunft

Nach gegenwärtigem Wissenstand scheint demnach ein Einfluß der Plattentektonik und Mantelkonvektion auf das Erdmagnetfeld sehr wohl möglich. Der Beitrag zeigt aber auch auf, welche zukünftigen Forschungen noch notwendig sind, um diese Zusammenhänge besser zu verstehen. Insbesondere sollte versucht werden, aus paläomagnetischen Daten weitere Episoden von „echten Polwanderungen“ abzuleiten, und festzustellen, ob diese üblicherweise mit verändertem Verhalten des Magnetfeldes (z.B. Häufigkeit der Feldumkehr) assoziiert sind. Auch sollten künftige Modelle zur Erzeugung des Erdmagnetfeldes den Einfluß der räumlichen und zeitliche Variation des Wärmestroms an der Kern-Mantelgrenze noch genauer untersuchen.

J. Biggin et al., “Possible links between long-term geomagnetic variations and whole-mantle convection processes”, Nature Geoscience, Vol. 5, August 2012, doi:10.1038/NGEO1521
Abb. in druckfähiger Auflösung und eine Animation finden sich unter:
http://www.gfz-potsdam.de/portal/gfz/Public+Relations/M40-Bildarchiv/Magnetfeld_Waermefluss

Kontakt: Dr. Bernhard Steinberger, GFZ, +49-331-288 1881

Franz Ossing | GFZ Potsdam
Weitere Informationen:
http://www.gfz-potsdam.de

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Wie der Nordatlantik zum Wärmepirat wurde
23.01.2017 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

nachricht Neues Forschungsspecial zu Meeren, Ozeanen und Gewässern
18.01.2017 | Hochschule für Angewandte Wissenschaften Hamburg

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie der Nordatlantik zum Wärmepirat wurde

23.01.2017 | Geowissenschaften

Immunabwehr ohne Kollateralschaden

23.01.2017 | Biowissenschaften Chemie

Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

23.01.2017 | Physik Astronomie