Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Licht lässt Partikel wachsen - Forscher entdecken neuen Mechanismus in der Atmosphäre

23.05.2012
Licht lässt die Partikel in der Atmosphäre wachsen. In einem Experiment hat ein internationales Forscherteam erstmals einen neuen Mechanismus nachweisen können, bei dem Partikel durch Licht größer werden und der damit Einfluss auf die Wolkenbildung und das Klima hat.

Photokatalytische Reaktionen können zu einer schnellen Bindung von nicht kondensierenden flüchtigen organischen Kohlenwasserstoffen (VOCs) auf der Oberfläche der Partikel führen. Unter solchen Bedingungen nehme die Größe und Masse der Partikel schnell zu, schreiben die Wissenschaftler im renommierten Fachblatt PNAS.


Im Labor des IRCELYON in Lyon setzten die Wissenschaftler das Luftgemisch abwechselnd Licht oder Dunkelheit aus und maßen die Größe der Partikel. Im Bild zu sehen ist das Glasrohr, in der sich die Reaktion abspielt, sowie die Beleuchtung, mit der Tag und Nacht simuliert wurde. Foto: Eric Le Roux / Université Claude Bernard Lyon 1 (UCBL)/ IRCELYON


Im Labor des IRCELYON in Lyon setzten die Wissenschaftler das Luftgemisch abwechselnd Licht oder Dunkelheit aus und maßen die Größe der Partikel. Im Bild zu sehen ist das Glasrohr, in der sich die Reaktion abspielt, sowie die Beleuchtung, mit der Tag und Nacht simuliert wurde. Foto: Eric Le Roux / Université Claude Bernard Lyon 1 (UCBL)/ IRCELYON

Die Ergebnisse des Laborexperimentes könnten Effekte erklären, die bisher schon bei Feldkampagnen beobachtet wurden, aber lange rätselhaft waren und deshalb in den globalen Klimamodellen noch nicht berücksichtigt sind.

Die traditionelle Vorstellung vom Wachstum der Partikel war bisher, dass bestimmte Gase in der Atmosphäre reagieren und dabei semiflüchtige Gase entstehen, die unter bestimmten Bedingungen auf der Oberfläche von Partikeln kondensieren. „Wir fanden heraus, dass Licht chemische Reaktionen auslösen kann zwischen gasförmigen Verbindungen und Chemikalien auf der Oberfläche von organischen Partikeln, die es nicht kondensierenden flüchtigen organischen Kohlenwasserstoffen erlauben, sich dort anzusiedeln und so die Partikel größer werden lassen“, berichtet Dr. Maria-Eugenia Monge vom IRCELYON und der Universität Lyon. Solche flüchtigen organischen Kohlenwasserstoffe (kurz VOCs) entstehen auch auf natürlichen Wege. Zum Beispiel entweicht Isopren als wichtige Bestandteil ätherischer Öle aus Pflanzen in die Atmosphäre. Daher wird es vor allem über großen Wäldern wie dem tropischen Regenwald gebildet. Die Forscher benutzen daher in ihrem Experiment mit Limonen und Isopren zwei VOCs, die zu den weltweit häufigsten Spurengasen gehören, die die Vegetation der Erde in die Atmosphäre abgibt. Zusammen mit Partikeln setzten sie die Mischung anschließend abwechselnd Licht oder Dunkelheit aus und maßen die Größe der Partikel. Dabei zeigte sich, dass die Partikel unter Lichteinfluss etwa von 50 auf 65 Nanometer gewachsen waren, was rund einer Verdoppelung ihres Gewichts entspricht. Ersetzten sie die Luft durch Stickstoff, dann war dieser Effekt kaum noch wahrnehmbar, was dafür spricht, dass Sauerstoff an der Reaktion beteiligt sein muss. Die Intensität des Lichts war dagegen weniger wichtig.

Schon schwache UV-Strahlung reicht aus, um die chemischen Bindungen bei gelöstem organischen Material (DOM) aufzubrechen und freie Radikale zu bilden. An den Experimenten am IRCELYON in Lyon unter der Leitung von Dr. Christian George waren neben der Universität auch Wissenschaftler der französischen Forschungsgemeinschaft CNRS, des israelischen Weizmann-Instituts aus der Gruppe von Prof. Yinon Rudich und Prof. Hartmut Herrmann vom deutschen Leibniz-Institut für Troposphärenforschung (IfT) in Leipzig beteiligt.

Die gemeinsame Arbeit von IRCELYON, Weizmann und IfT wird durch das EU-Projekt PEGASOS gefördert. Prof. Herrmann nahm an den Arbeiten während eines Forschungsaufenthalts teil, der durch Mittel des Gay-Lussac-Humboldt-Forschungspreises unterstützt wurde ,den er 2010 erhalten hat. Während seines Aufenthalts war er auch als Gastprofessor an der Universität Claude Bernard in Lyon tätig.

Winzige Aerosolpartikel in der Atmosphäre beeinflussen das Weltklima, da sie Sonnenlicht zurückstrahlen. Ebenso sind sie ein Faktor im globalen Wasserkreislauf, da sie die Wolkenbildung und damit die Niederschläge beeinflussen. Und als Feinstaub wirken sie sich auch auf die menschliche Gesundheit aus. Trotzdem gehören die Prozesse, die für Entstehen und Wachstum dieser Partikel verantwortlich sind, zu den am wenigsten verstandenen Gebieten der Atmosphärenwissenschaften. "Dieser neue und weitere bisher unbekannte Prozesse könnten die Ursache sein, dass die Atmosphärenchemie und -physik in ihren Modellen häufig die Aerosolkonzentrationen unterschätzt. Diese photounterstützten Prozesse sollten zunächst experimentell eingehender charakterisiert werden und künftig in Troposphären-Modelle mit einfließen“, empfiehlt Prof. Herrmann. Dazu soll die Kooperation zwischen IfT und IRCELYON weiter fortgesetzt werden.

Am IfT wird wird die Entwicklungskette der atmosphärischen Partikel von Feinstaub über Wolken bis zum Niederschlag in natürlich geprägten und auch anthropogen belasteten Regionen wie etwa in Megacities erforscht. Langzeitmessungen der Aerosolzusammensetzung geben Aufschluss über Luftqualität sowie chemische und physikalische Alterungs- und Transportmechanismen. Detaillierte Prozessstudien unterstützen die Beschreibung der Wirkung von Partikeln und Wolken im Erdsystem.

Tilo Arnhold

Publikation:
Maria Eugenia Monge, Thomas Rosenørn, Olivier Favez, Markus Müller, Gabriela Adler, Ali Abo Riziq, Yinon Rudich, Hartmut Herrmann, Christian George and Barbara D’Anna (2012): Alternative pathway for atmospheric particles growth. PNAS. May 1, 2012. vol. 109, no. 18, 6840–6844.
http://www.pnas.org/cgi/doi/10.1073/pnas.1120593109
http://www.pnas.org/content/suppl/2012/04/17/1120593109.DCSupplemental
/pnas.1120593109_SI.pdf
Die Untersuchungen wurden der Agence National de le Recherche Scientifique (ANR) im Rahmen des Projektes PHOTOAERO, dem NaBi, einem Labor der französischen Forschungsgemeinschaft CNRS und des israelischen Weizmann-Institutes, sowie der EU im Rahmen des Projektes PEGASOS gefördert.
Beteiligte Institute:
Université de Lyon; Centre National de la Recherche Scientifique (CNRS), Institut de recherches sur la catalyse et l’environnement de Lyon (IRCELYON).
Weizmann Institute, Rehovot, Israel.
Leibniz-Institut für Troposphärenforschung (IfT), Leipzig.
Weitere Infos:
Dr. María Eugenia Monge
IRCELYON (Institut de recherches sur la catalyse et l’environnement de Lyon), CNRS in Lyon/Frankreich
Tel: +33 (0) 472448293
Email: maria-eugenia.monge@ircelyon.univ-lyon1.fr
&
Dr. Barbara D'Anna
IRCELYON (Institut de recherches sur la catalyse et l’environnement de Lyon), CNRS in Lyon/Frankreich
Tél : +33 (0) 223235635
Email: barbara.danna@ircelyon.univ-lyon1.fr
http://www.cnrs.fr/inc/communication/direct_labos/danna.htm
http://www.ircelyon.univ-lyon1.fr/en/
und
Prof. Hartmut Herrmann
Leibniz-Institut für Troposphärenforschung (IfT), Abteilung Chemie, in Leipzig/Deutschland
Tel. 0341-235-2446
http://www.tropos.de/info/herrmann_h.pdf
Links:
IRCELYON (Institut de recherches sur la catalyse et l’environnement de Lyon):
http://www.ircelyon.univ-lyon1.fr/en/research
Pressemitteilung des CNRS (in französisch):
http://www.cnrs.fr/inc/communication/direct_labos/danna.htm
EU-Projekt PhotoPAQ:
http://photopaq.ircelyon.univ-lyon1.fr/
EU-Projekt PEGASOS (Pan-European-Gas-AeroSOI-Climate Interaction Study):
http://pegasos.iceht.forth.gr/
Take-off für PEGASOS / Klimaforschung mit dem Luftschiff
http://www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/DE/2012/2012-05-04Take-off_PEGASOS.html

http://www.bmbf.de/press/3272.php

Verwirbelte Luft läßt neue Partikel entstehen
http://idw-online.de/pages/de/news414912
Das Leibniz-Institut für Troposphärenforschung ist Mitglied der Leibniz-Gemeinschaft. Ihr gehören zurzeit 87 Forschungsinstitute und wissenschaftliche Infrastruktureinrichtungen für die Forschung sowie zwei assoziierte Mitglieder an. Die Ausrichtung der Leibniz-Institute reicht von den Natur-, Ingenieur- und Umweltwissenschaften über die Wirtschafts, Sozial- und Raumwissenschaften bis hin zu den Geisteswissenschaften. Leibniz-Institute bearbeiten gesamtgesellschaftlich relevante Fragestellungen strategisch und themenorientiert. Dabei bedienen sie sich verschiedener Forschungstypen wie Grundlagen-, Groß- und anwendungsorientierter Forschung. Sie legen neben der Forschung großen Wert auf wissenschaftliche Dienstleistungen sowie Wissenstransfer in Richtung Politik, Wissenschaft, Wirtschaft und Öffentlichkeit. Sie pflegen intensive Kooperationen mit Hochschulen, Industrie und anderen Partnern im In- und Ausland. Das externe Begutachtungsverfahren der Leibniz-Gemeinschaft setzt Maßstäbe. Jedes Leibniz-Institut hat eine Aufgabe von gesamtstaatlicher Bedeutung. Bund und Länder fördern die Institute der Leibniz-Gemeinschaft daher gemeinsam. Die Leibniz-Institute beschäftigen etwa 16.800 Mitarbeiterinnen und Mitarbeiter, davon sind ca. 7.800 Wissenschaftler, davon wiederum 3.300 Nachwuchswissenschaftler. Der Gesamtetat der Institute liegt bei mehr als 1,4 Mrd. Euro, die Drittmittel betragen etwa 330 Mio. Euro pro Jahr.

Tilo Arnhold | Leibniz-Institut
Weitere Informationen:
http://www.leibniz-gemeinschaft.de
http://www.pnas.org/cgi/doi/10.1073/pnas.1120593109

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Klimawandel: Bäume binden im Alter große Mengen Kohlenstoff
17.08.2017 | Universität Hamburg

nachricht Neue Grundlagen für die Verbesserung von Klima-und Vegetationsmodellen
08.08.2017 | Max-Planck-Institut für Biogeochemie

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Scharfe Röntgenblitze aus dem Atomkern

17.08.2017 | Physik Astronomie

Fake News finden und bekämpfen

17.08.2017 | Interdisziplinäre Forschung

Effizienz steigern, Kosten senken!

17.08.2017 | Messenachrichten