Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Leben in der geologischen Knautschzone: Gebirge fördern die biologische Vielfalt

28.02.2013
Lange wurde angenommen, dass stabile Umweltbedingungen die Biodiversität begünstigen, da sie der Artbildung Zeit lassen.

Neue Forschungsergebnisse legen aber nahe, dass sich in geologisch dynamischen Regionen deutlich mehr Arten bilden. Junge Gebirge bieten neue Lebensbedingungen und noch unbesetzte Nischen, in denen neue Arten entstehen.


Gebirgslandschaft in den Peruanischen Anden.
©Bas Wallet

Wissenschaftler der Universitäten Amsterdam und Frankfurt, der Senckenberg Gesellschaft für Naturforschung (SGN) und des Biodiversität und Klima Forschungszentrums (BiK-F) plädieren in der März-Ausgabe der Zeitschrift Nature Geoscience für eine engere Kooperation zwischen Bio- und Geowissenschaften, um diese Prozesse besser zu verstehen.

Die lange geltende Annahme, dass langfristig stabile Lebensbedingungen mit einer großen Artenvielfalt einhergehen, trifft nicht überall zu. Vielmehr deuten neue Studien darauf hin, dass es gerade instabile, sich wandelnde Lebensräume sind, die der biologischen Vielfalt stets neuen Raum zur weiteren Entfaltung bieten. Die Entstehung von Bergketten und Gebirgen spielt hier eine große Rolle: Hier bilden sich unbesetzte Lebensräume mit neuen klimatischen und landschaftlichen Bedingungen und ganz speziellen ökologischen Gegebenheiten, die gerade dazu einladen, von neu entstehenden Arten besiedelt zu werden.

Barriere und Brücke zugleich

Bergketten und Gebirge haben vielfältige Auswirkungen auf die biologische Vielfalt: Während sie die Verbreitung mancher Organismen unterbinden, stellen sie für andere Arten Brücken zwischen Lebensräumen dar. Neu entstehende Gebirge zerschneiden vorher homogene Lebensräume, oder aber verbinden Landmassen und schaffen so neue Wege für sich ausbreitende Arten. Gebirgsregionen beherbergen außerdem eine Vielzahl sehr speziell angepasster Arten in räumlich kleinen Nischen – und erstaunlicherweise sind diese Arten von sich ändernden Klimabedingungen oft geringer betroffen als Flachlandarten: Sie müssen nicht weit wandern, um wieder optimale Temperaturen vorzufinden. Ihr großer Artenreichtum lässt Bergregionen auch zur „Biodiversitätspumpe“ für die angrenzenden Flachlandregionen werden, in die laufend Arten aus den Gebirgen zuwandern und bei der notwendigen Anpassung zu neuen Spezies werden.

Im Fluss: Entstehung von Lebensräumen

Aber nicht nur das unmittelbare Umfeld wird durch die Arten aus den Gebirgen bereichert, die majestätischen Dächer der Welt prägen vielmehr ganze Kontinente: Das an biologischer Vielfalt unermesslich reiche Amazonasbecken in Südamerika beispielsweise wäre ohne die Anden nicht denkbar. Die aus der Verwitterung der andinen Gesteine stammenden nährstoffreichen Sedimente bilden die Grundlage für den einzigarten Artenreichtum der Amazonasregion. Und der Einfluss des Gebirges reicht sogar bis in den Atlantischen Ozean: Durch den Amazonas weit ins Meer hinaus transportierte Sedimente schaffen hier völlig andere geochemische Bedingungen als in den angrenzenden Gewässern. Und dies nicht nur in Südamerika: Prof. Dr. Andreas Mulch (BiK-F, SGN und Goethe-Universität), einer der Frankfurter Autoren, betont: „Die Rolle von Gebirgsregionen als einer der Motoren der Evolution ist keine Besonderheit der Anden. Sie gilt ebenso für die Himalayaregion oder auch die Alpen.“

Pionier Alfred Wegener: Forderung nach Kooperation zwischen Geo- und Biowissenschaften

„Schon Alfred Wegener forderte bei der Vorstellung seiner damals noch umstrittenen Theorie der Kontinentaldrift im Senckenbergmuseum eine Annäherung zwischen den Wissenschaftsdisziplinen“, so Prof. Dr. Dr. h. c. Volker Mosbrugger, Generaldirektor der Senckenberg Gesellschaft für Naturforschung und Mitautor des Beitrags. „Aber erst heute, hundert Jahre später, findet diese langsam statt.“ Zum Verständnis des Werdens und Vergehens der globalen Biodiversität müssen Geo- und Biowissenschaften aber intensiv zusammenarbeiten, um die auf ganz unterschiedlichen räumlichen, zeitlichen und taxonomischen Skalen ablaufenden Evolutionsprozesse zu erfassen. Neue molekularbiologische Methoden und moderne geochemische Ansätze zur Rekonstruktion von Erdoberflächenprozessen ermöglichen es, immer umfassender zu erklären, wie Geologie und Klima interagieren und gemeinsam Evolution beeinflussen. Außerdem begünstigt ein wachsendes wissenschaftliches Interesse an interdisziplinären Projekten die Zusammenarbeit. In ihrer Stellungnahme an die Zeitschrift Nature Geoscience plädieren die Wissenschaftler dafür, diese neuen gemeinsamen Forschungswege zu beschreiten, da ein umfassendes Verständnis der globalen Biodiversität nur erreicht werden kann, wenn fächerübergreifende Forschung sich der Interaktion Geosphäre und Biosphäre widmet.

Veröffentlichung:
Carina Hoorn, Volker Mosbrugger, Andreas Mulch & Alexandre Antonelli (2013): Biodiversity from mountain building. – Nature Geoscience. doi:10.1038/ngeo1742

Für weitere Informationen kontaktieren Sie bitte:
Prof. Dr. Andreas Mulch
LOEWE Biodiversität und Klima Forschungszentrum (BiK-F)
Tel. +49 (0)69 7542 1881
andreas.mulch@senckenberg.de

oder

Dr. Julia Krohmer
LOEWE Biodiversität und Klima Forschungszentrum (BiK-F),
Transferstelle
Tel. +49 (0)69 7542 1837
julia.krohmer@senckenberg.de

LOEWE Biodiversität und Klima Forschungszentrum, Frankfurt am Main
Mit dem Ziel, anhand eines breit angelegten Methodenspektrums die komplexen Wechselwirkungen von Biodiversität und Klima zu entschlüsseln, wird das Biodiversität und Klima Forschungszentrum (BiK‐F) seit 2008 im Rahmen der hessischen Landes‐ Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz (LOEWE) gefördert. Die Senckenberg Gesellschaft für Naturforschung und die Goethe Universität Frankfurt sowie weitere direkt eingebundene Partner kooperieren hier eng mit regionalen, nationalen und internationalen Akteuren aus Wissenschaft, Ressourcen‐ und Umweltmanagement, um Projektionen für die Zukunft zu entwickeln und wissenschaftlich gesicherte Empfehlungen für ein nachhaltiges Handeln zu geben.

Sabine Wendler | Senckenberg
Weitere Informationen:
http://www.bik‐f.de
http://www.senckenberg.de

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur
22.06.2017 | Fraunhofer-Gesellschaft

nachricht Ursuppe in Dosen
21.06.2017 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Im Focus: Forscher entschlüsseln erstmals intaktes Virus atomgenau mit Röntgenlaser

Bahnbrechende Untersuchungsmethode beschleunigt Proteinanalyse um ein Vielfaches

Ein internationales Forscherteam hat erstmals mit einem Röntgenlaser die atomgenaue Struktur eines intakten Viruspartikels entschlüsselt. Die verwendete...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

Forschung zu Stressbewältigung wird diskutiert

21.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Individualisierte Faserkomponenten für den Weltmarkt

22.06.2017 | Physik Astronomie

Evolutionsbiologie: Wie die Zellen zu ihren Kraftwerken kamen

22.06.2017 | Biowissenschaften Chemie

Spinflüssigkeiten – zurück zu den Anfängen

22.06.2017 | Physik Astronomie