Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kriechen statt Brechen: Unterkruste verformt sich weiträumig

04.02.2011
RUB-Forscher analysieren Erdbebenwellen in der Ägäis
Nature Geoscience: Mineralausrichtung hält sich Millionen Jahre

Während sich an der Erdoberfläche Verformungen in lokalen Brüchen und Beben entladen, finden in der Unterkruste eher großflächige, kriechende Bewegungen statt. Diese These stützen Ergebnisse eines Geowissenschaftler-Teams aus Bochum, Potsdam, Kiel und Dublin.

Die Forscher, darunter Prof. Dr. Wolfgang Friederich (Institut für Geologie, Mineralogie und Geophysik der RUB), haben mehrere Jahre lang Erdbebenwellen in der Ägäis aufgezeichnet und anhand ihrer Geschwindigkeit Rückschlüsse auf die Kristallausrichtung tieferer Erdschichten gezogen. In der südlichen Ägäis, die in den letzten fünf Millionen Jahren nur schwachen Deformationen unterworfen war, hat sich überraschenderweise die Ausrichtung früherer Deformationen erhalten. Die Forscher berichten in der aktuellen Ausgabe von Nature Geoscience.

Untersuchungen am Ort des Zusammenstoßes von Afrikanischer und Europäischer Platte

Bei der Kollision von Erdplatten kommt es zu komplexen Deformationsvorgängen in der Lithosphäre, welche die obersten 60 bis 100 km des Erdkörpers mit der Erdkruste und Teilen des Erdmantels umfasst. In der oberen Erdkruste verhält sich das Gestein spröde. Durch Verformungen bauen sich Spannungen auf, die sich lokal begrenzt in Erdbeben entladen. In der wärmeren Unterkruste ab 20 km Tiefe und dem obersten Erdmantel kann es aber auch zu langsamen Kriechbewegungen des Gesteins kommen, die über geologische Zeiträume von mehreren Millionen Jahren hinweg zu beträchtlichen Verschiebungen anwachsen können. Was genau in der Unterkruste passiert, war bislang unklar. Die Forscher um Prof. Dr. Wolfgang Friederich haben die Deformationsvorgänge in der Lithosphäre der Ägäis untersucht, wo die Afrikanische mit der Europäischen Platte zusammenstößt.

Geschwindigkeit von Erdbebenwellen zeigt die Richtung

Die Forscher stützten sich dabei auf die Messungen von Erdbebenwellen an verschiedenen Seismographennetzen in der Region. „In der Ägäis finden jeden Monat 1000 Erdbeben statt, die drei bis fünf stärkeren kommen für eine Analyse in Frage“, erklärt Prof. Friederich. Dabei kommt es darauf an, Erdbebenwellen verschiedener Richtungen zu analysieren. Denn die Geschwindigkeit ihrer Ausbreitung lässt Rückschlüsse auf die Struktur tief liegender Gesteinsschichten zu. „Die Deformation von Gesteinen verändert das Kristallgefüge“, erklärt Prof. Friederich. „Im Laufe von Millionen Jahren richten sich die gesteinsbildenden Minerale durch die Verformung aus. Ohne diese Deformationen haben sie eine zufällige Verteilung in alle Richtungen.“ Wenn es zu einer Ausrichtung der Minerale gekommen ist, breiten sich Erdbebenwellen parallel dazu schneller aus als senkrecht dazu.

Überraschendes Ergebnis in der südlichen Ägäis

Aktuelle Messungen der Verschiebung der Erdplatten in der Ägäis an der Erdoberfläche mit GPS (Global Positioning System) zeigen eine Ausdehnung der nördlichen Ägäis in nord-südlicher Richtung, während die südliche Ägäis nur eine sehr geringe Deformation erfährt. Wie zu erwarten war, sind nach den Ergebnissen der Forscher die Minerale in der nördlichen Ägäis ebenfalls durch die gesamte Lithosphäre bis in den Erdmantel hinein konsistent in Nord-Süd-Richtung ausgerichtet und zeigen damit die jüngere Extensionsrichtung an. In der südlichen Ägäis sieht es anders aus. Der oberste Erdmantel zeigt nur eine schwache Ausrichtung der Minerale – entsprechend der nur schwachen Deformation in der jüngeren Erdgeschichte. „In der Unterkruste haben wir aber überraschenderweise eine deutliche Ausrichtung in Nord-Ost nach Süd-West-Richtung gefunden“, berichtet Prof. Friederich. Diese Ausrichtung stimmt mit der Extensionsrichtung der Ägäis im Miozän (vor 20 bis fünf Millionen Jahren) überein. „Offenbar wurden die Minerale in der Unterkruste im Miozän ausgerichtet und haben diese Orientierung bis heute beibehalten“, folgert der Geophysiker. Das deutet darauf hin, dass die Unterkruste sich nicht lokalisiert, sondern großräumig durch „Kriechen“ verformt.

Förderung des Projekts

Die Forschungsarbeiten wurden im Rahmen des Sonderforschungsbereiches SFB 526 „Rheologie der Erde“ von der Deutschen Forschungsgemeinschaft und von der Science Foundation Ireland gefördert.

Titelaufnahme

Brigitte Endrun, Sergei Lebedev, Thomas Meier, Céline Tirel & Wolfgang Friederich: Complex layered deformation within the Aegean crust and mantle revealed by seismic anisotropy. In: Nature Geoscience, Published online 30.01.2011, doi: 10.1038/ngeo1065

Weitere Informationen

Prof. Dr. Wolfgang Friederich, Institut für Geologie, Mineralogie und Geophysik, Tel. 0234/32-23271, E-Mail: wolfgang.friederich@rub.de, Internet: http://www.geophysik.ruhr-uni-bochum.de, http://www.ruhr-uni-bochum.de/sfb526/

Redaktion: Meike Drießen

Dr. Josef König | idw
Weitere Informationen:
http://www.geophysik.ruhr-uni-bochum.de, http://www.ruhr-uni-bochum.de/sfb526/

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Unterschiedliche Erwärmung von Arktis und Antarktis: Forscher sieht Höhenunterschied als Ursache
18.05.2017 | Universität Leipzig

nachricht Wie wirkt sich der Klimawandel auf die Bewohner der Arktis aus?
18.05.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium 2017: Internet of Production für agile Unternehmen

23.05.2017 | Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

Branchentreff für IT-Entscheider - Rittal Praxistage IT in Stuttgart und München

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

WHZ erhält hochmodernen Prüfkomplex für Schraubenverbindungen

23.05.2017 | Maschinenbau

«Schwangere» Stubenfliegenmännchen zeigen Evolution der Geschlechtsbestimmung

23.05.2017 | Biowissenschaften Chemie

Tumult im trägen Elektronen-Dasein

23.05.2017 | Physik Astronomie