Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kriechen statt Brechen: Unterkruste verformt sich weiträumig

04.02.2011
RUB-Forscher analysieren Erdbebenwellen in der Ägäis
Nature Geoscience: Mineralausrichtung hält sich Millionen Jahre

Während sich an der Erdoberfläche Verformungen in lokalen Brüchen und Beben entladen, finden in der Unterkruste eher großflächige, kriechende Bewegungen statt. Diese These stützen Ergebnisse eines Geowissenschaftler-Teams aus Bochum, Potsdam, Kiel und Dublin.

Die Forscher, darunter Prof. Dr. Wolfgang Friederich (Institut für Geologie, Mineralogie und Geophysik der RUB), haben mehrere Jahre lang Erdbebenwellen in der Ägäis aufgezeichnet und anhand ihrer Geschwindigkeit Rückschlüsse auf die Kristallausrichtung tieferer Erdschichten gezogen. In der südlichen Ägäis, die in den letzten fünf Millionen Jahren nur schwachen Deformationen unterworfen war, hat sich überraschenderweise die Ausrichtung früherer Deformationen erhalten. Die Forscher berichten in der aktuellen Ausgabe von Nature Geoscience.

Untersuchungen am Ort des Zusammenstoßes von Afrikanischer und Europäischer Platte

Bei der Kollision von Erdplatten kommt es zu komplexen Deformationsvorgängen in der Lithosphäre, welche die obersten 60 bis 100 km des Erdkörpers mit der Erdkruste und Teilen des Erdmantels umfasst. In der oberen Erdkruste verhält sich das Gestein spröde. Durch Verformungen bauen sich Spannungen auf, die sich lokal begrenzt in Erdbeben entladen. In der wärmeren Unterkruste ab 20 km Tiefe und dem obersten Erdmantel kann es aber auch zu langsamen Kriechbewegungen des Gesteins kommen, die über geologische Zeiträume von mehreren Millionen Jahren hinweg zu beträchtlichen Verschiebungen anwachsen können. Was genau in der Unterkruste passiert, war bislang unklar. Die Forscher um Prof. Dr. Wolfgang Friederich haben die Deformationsvorgänge in der Lithosphäre der Ägäis untersucht, wo die Afrikanische mit der Europäischen Platte zusammenstößt.

Geschwindigkeit von Erdbebenwellen zeigt die Richtung

Die Forscher stützten sich dabei auf die Messungen von Erdbebenwellen an verschiedenen Seismographennetzen in der Region. „In der Ägäis finden jeden Monat 1000 Erdbeben statt, die drei bis fünf stärkeren kommen für eine Analyse in Frage“, erklärt Prof. Friederich. Dabei kommt es darauf an, Erdbebenwellen verschiedener Richtungen zu analysieren. Denn die Geschwindigkeit ihrer Ausbreitung lässt Rückschlüsse auf die Struktur tief liegender Gesteinsschichten zu. „Die Deformation von Gesteinen verändert das Kristallgefüge“, erklärt Prof. Friederich. „Im Laufe von Millionen Jahren richten sich die gesteinsbildenden Minerale durch die Verformung aus. Ohne diese Deformationen haben sie eine zufällige Verteilung in alle Richtungen.“ Wenn es zu einer Ausrichtung der Minerale gekommen ist, breiten sich Erdbebenwellen parallel dazu schneller aus als senkrecht dazu.

Überraschendes Ergebnis in der südlichen Ägäis

Aktuelle Messungen der Verschiebung der Erdplatten in der Ägäis an der Erdoberfläche mit GPS (Global Positioning System) zeigen eine Ausdehnung der nördlichen Ägäis in nord-südlicher Richtung, während die südliche Ägäis nur eine sehr geringe Deformation erfährt. Wie zu erwarten war, sind nach den Ergebnissen der Forscher die Minerale in der nördlichen Ägäis ebenfalls durch die gesamte Lithosphäre bis in den Erdmantel hinein konsistent in Nord-Süd-Richtung ausgerichtet und zeigen damit die jüngere Extensionsrichtung an. In der südlichen Ägäis sieht es anders aus. Der oberste Erdmantel zeigt nur eine schwache Ausrichtung der Minerale – entsprechend der nur schwachen Deformation in der jüngeren Erdgeschichte. „In der Unterkruste haben wir aber überraschenderweise eine deutliche Ausrichtung in Nord-Ost nach Süd-West-Richtung gefunden“, berichtet Prof. Friederich. Diese Ausrichtung stimmt mit der Extensionsrichtung der Ägäis im Miozän (vor 20 bis fünf Millionen Jahren) überein. „Offenbar wurden die Minerale in der Unterkruste im Miozän ausgerichtet und haben diese Orientierung bis heute beibehalten“, folgert der Geophysiker. Das deutet darauf hin, dass die Unterkruste sich nicht lokalisiert, sondern großräumig durch „Kriechen“ verformt.

Förderung des Projekts

Die Forschungsarbeiten wurden im Rahmen des Sonderforschungsbereiches SFB 526 „Rheologie der Erde“ von der Deutschen Forschungsgemeinschaft und von der Science Foundation Ireland gefördert.

Titelaufnahme

Brigitte Endrun, Sergei Lebedev, Thomas Meier, Céline Tirel & Wolfgang Friederich: Complex layered deformation within the Aegean crust and mantle revealed by seismic anisotropy. In: Nature Geoscience, Published online 30.01.2011, doi: 10.1038/ngeo1065

Weitere Informationen

Prof. Dr. Wolfgang Friederich, Institut für Geologie, Mineralogie und Geophysik, Tel. 0234/32-23271, E-Mail: wolfgang.friederich@rub.de, Internet: http://www.geophysik.ruhr-uni-bochum.de, http://www.ruhr-uni-bochum.de/sfb526/

Redaktion: Meike Drießen

Dr. Josef König | idw
Weitere Informationen:
http://www.geophysik.ruhr-uni-bochum.de, http://www.ruhr-uni-bochum.de/sfb526/

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Stagnation im tiefen Südpazifik erklärt natürliche CO2-Schwankungen
23.02.2018 | Carl von Ossietzky-Universität Oldenburg

nachricht Birgt Mikroplastik zusätzliche Gefahren durch Besiedlung mit schädlichen Bakterien?
21.02.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics