Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Krater unterm Stethoskop

16.12.2013
Ultraschall macht unterirdische Schäden von Meteoriteneinschlägen sichtbar

Ein Meteoriteneinschlag hinterlässt nicht nur auf der Erdoberfläche sichtbare Spuren. Auch unterirdisch entstehen Risse und Spalten, abhängig von Größe, Energie und Einschlagswinkel des Himmelskörpers.


Wie hat der Einschlag des Mini-Meteoriten den Sandstein im Innern geschädigt? Die Ultraschall-Analyse wird es zeigen. (Bild: TUM / MEMIN)

Das Ausmaß dieser Schädigungszone können geophysikalische Messverfahren bislang nur ungenau erfassen. Wissenschaftler der Technischen Universität München (TUM) arbeiten deshalb daran, die Bildung von Kratern besser zu verstehen: Sie haben dafür Miniatur-Meteorite unter Laborbedingungen einschlagen lassen – und unterziehen die Krater einer Ultraschallanalyse.

Bis zu 30.000 Kilometer pro Stunde schnell sind die Metallkugeln, die die Forscher auf einen Sandsteinblock schießen. Im Labor des Fraunhofer-Instituts für Kurzzeitdynamik in Freiburg simulieren die Miniatur-Meteorite die Zerstörungskraft von echten Einschlägen: Ein Zentimeter große Projektile hinterlassen einen sechs Zentimeter breiten und einen Zentimeter tiefen Sandsteinkrater. Dabei fällt die tatsächliche Schädigung im Inneren des Gesteins weitaus größer aus, als mit bloßem Auge oder im Mikroskop erkennbar ist – das haben Wissenschaftler der Technischen Universität München (TUM) mithilfe von Ultraschalltomographie ermittelt. Bis zu achtmal breiter als der eigentliche Krater ist die Zone, in der unterirdisch Risse und Spalten verlaufen.

Kosmische Kräfte im Labor

„Bei natürlichen Kratern können wir oft nur Vermutungen darüber anstellen, welche Schäden von dem Meteoriteneinschlag selbst stammen und welche Risse nachträglich durch die Verwitterung des Gesteins entstanden sind“, sagt Prof. Christian Große vom TUM-Lehrstuhl für Zerstörungsfreie Prüfung. Mit den Ultraschallmessungen können die Wissenschaftler nun systematisch erheben, wie sich Größe, Energie und Einschlagswinkel eines Meteoriten auf die Beschaffenheit der unterirdischen Schädigung auswirken. „Bei einem senkrechten Aufprall können wir beispielsweise eine halbkugelförmige Schädigungszone erfassen. Trifft der Meteorit schräg auf, kann das anders aussehen“, sagt Große.

Er arbeitet gemeinsam mit Geowissenschaftlern, Physikern und Ingenieuren daran, die Bildung von Meteoritenkratern besser zu verstehen. „Die Kollision von Himmelskörpern gehört zu den wichtigsten Prozessen bei der Entstehung unserer Galaxie. Mit den Kraterexperimenten können wir auch ihre Wirkung auf die Erde besser abschätzen.“

Signale aus dem Inneren des Gesteins

Mithilfe des Ultraschall-Tomographen lassen sich Grad und Ausbreitung der verborgenen Risse im Gestein erfassen, ohne die wertvollen experimentellen Krater zu beschädigen. Dazu wird ein akustisches Signal in einer bestimmten Frequenz durch den Sandsteinblock geschickt. Weil sich die Schallwellen im Gestein mit 3.000 Metern pro Sekunde etwa zehnmal schneller ausbreiten als in der Luft, verursachen Risse und Spalten Signale mit größerer Amplitude. Auf der Basis dieser Signale erstellen die Wissenschaftler Geschwindigkeitsfelder, die sichtbar machen, wo die Schallwellen von Rissen aufgehalten werden. „Im nächsten Schritt verändern wir gezielt die Schussenergie und den Einschlagswinkel der Miniatur-Meteorite – und damit auch den unterirdischen Teil der Krater“, erklärt Große.

Über das Projekt:
Die von der Deutschen Forschungsgemeinschaft (DFG) finanzierte Forschergruppe MEMIN (Multidisciplinary Experimental and Modeling Impact Crater Research Network) verfolgt das Ziel, die Prozesse bei Hochgeschwindigkeitseinschlägen und die Bildung von Meteoritenkratern mit experimentellen und numerischen Verfahren zu analysieren.

MEMIN ist eine ortsübergreifende Forschergruppe, an der neben dem Museum für Naturkunde Berlin das Fraunhofer Institut für Kurzzeitdynamik Freiburg, die Universität Freiburg, das Geoforschungszentrum Potsdam, die Technische Universität München, die Universität Münster und die University of California in Berkeley beteiligt sind. Das Projekt ist 2009 gestartet und konnte in diesem Jahr eine zweite Förderphase über drei Jahre erreichen.

Mehr Informationen:
http://www.memin.de
Videos und hochaufgelöste Bilder zum Download:
http://mediatum.ub.tum.de/?id=1185589#1185589
Publikation:
D. Moser, M. H. Poelchau, F. Stark, C. Große: Application of nondestructive testing methods to study the damage zone underneath impact craters of MEMIN laboratory experiments, Meteoritics & Planetary Science, 2013, doi: 10.1111/maps.12000

http://onlinelibrary.wiley.com/doi/10.1111/maps.12000/abstract

Kontakt:
Prof. Dr. Christian Große
Technische Universität München
Lehrstuhl für Zerstörungsfreie Prüfung
Tel: +49 89 289 27220
grosse@cbm.bv.tum.de
http://www.cbm.bv.tum.de

Die Technische Universität München (TUM) ist mit rund 500 Professorinnen und Professoren, 10.000 Mitarbeiterinnen und Mitarbeitern und 35.000 Studierenden eine der forschungsstärksten Technischen Universitäten Europas. Ihre Schwerpunkte sind die Ingenieurwissenschaften, Naturwissenschaften, Lebenswissenschaften und Medizin, ergänzt um Wirtschafts- und Bildungswissenschaft. Die TUM handelt als unternehmerische Universität, die Talente fördert und Mehrwert für die Gesellschaft schafft. Dabei profitiert sie von starken Partnern in Wissenschaft und Wirtschaft. Weltweit ist sie mit einem Campus in Singapur sowie Niederlassungen in Brüssel, Kairo, Mumbai, Peking und São Paulo vertreten. An der TUM haben Nobelpreisträger und Erfinder wie Rudolf Diesel und Carl von Linde geforscht. 2006 und 2012 wurde sie als Exzellenzuniversität ausgezeichnet. In internationalen Rankings gehört sie regelmäßig zu den besten Universitäten Deutschlands.

Prof. Dr. Christian Große | Technische Universität München
Weitere Informationen:
http://www.tum.de
http://www.tum.de/die-tum/aktuelles/pressemitteilungen/kurz/article/31235/

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Der Salzwasser-Wächter auf der Darßer Schwelle
19.09.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie