Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kräfte im Untergrund: Deformationsvorgänge in Kiesablagerungen

21.06.2010
Verbiegungen in den Ablagerungsschichten des Eisenstadt-Sopron-Beckens werden durch unregelmäßig verteilte Verformung im umgebenden Sediment bewirkt. Die Ursache sind Gradienten in der Verformungsintensität, die sowohl parallel als auch rechtwinklig zu einer Bruchzone auftreten. Diese Ergebnisse eines vom Wissenschaftsfonds FWF unterstützen Projektes erlauben sowohl ein besseres Verständnis über grundlegende geologische Vorgänge als auch über die Bildung und Struktur von Lagerstätten für Öl und Wasser.

Tektonische Kräfte können schon was bewegen. Der Himalaja oder der pazifische Tiefseegraben belegen das eindrucksvoll. Doch selbst diese wachsen im Jahr nur wenige Millimeter bis Zentimeter. Genau in dieser Dimension bewegen sich auch andere Zeugen geologischer Kräfte - die sogenannten Deformationsbänder.

Sie treten in weichen, porösen Gesteinsschichten, wie Sandstein, auf. Entstehen tun sie dort, wo grobkörnige Gesteine von Scherkräften der darüber- und darunterliegenden Gesteinshorizonte bewegt werden oder eine Volumenveränderung erfahren. Im Gegensatz zu einer sogenannten Verwerfung, bei der die Gesteinsschicht bricht, werden in den Deformationsbändern aber nur Gesteinskörner zermahlen oder neu organisiert. Dabei ändert sich jedoch die Porosität des Gesteins und damit seine Permeabilität für Flüssigkeiten. So tragen Deformationsbänder zur Bildung und Struktur von Öl- oder Wasservorkommen bei. Ihre Bildung und Wirkung auf das umgebende Gestein besser zu verstehen, ist das Ziel eines Projektes am Department für Geodynamik und Sedimentologie der Universität Wien.

DAS KORN MACHTS!
Die Projektleiterin Dr. Ulrike Exner und ihr Team konnten dabei zeigen, dass Deformationsbänder im Eisenstadt-Sopron-Becken nahe des Neusiedlersees aufgrund der relativ groben Körnung einen Gradienten in der Intensität ihrer Verformungen aufzeigen. Dieser Gradient verläuft vom undeformierten Nebengestein hin zum Zentrum des Deformationsbands. Dazu Dr. Exner: "Die hier verantwortlichen Zugspannungen wirken im rechten Winkel auf das Gestein des Deformationsbands. Doch wir haben auch festgestellt, dass es einen Verformungsgradienten parallel zur Orientierung der Bruchzone gibt. Bei diesem ist der größte Versatz in der Mitte des Deformationsbands zu erkennen. Nach oben und unten hin nimmt dieser dann ab." Die Konsequenz dieser beiden unterschiedlich ausgerichteten Verformungsgradienten ist eine Verfaltung der umgebenden Sedimentschichten.
DIE WIDERSINNIGE SCHLEPPUNG
Die weitere Wirkung dieser inhomogenen Deformationen im Gestein erklärt Dr. Exner so: "Die umgebenden Gesteinshorizonte beginnen sich zu verbiegen. Ein Effekt, der als Reverse Drag oder widersinnige Schleppung bezeichnet wird. Bei eng nebeneinanderliegenden Deformationsbändern können sich solche Schleppungen - oder Verdrehungen - sogar überlagern. Dann gibt es zunehmend wildere Muster." Doch selbst für diese Muster gibt es Erklärungsmodelle, wie Dr. Exner weiter ausführt: "Das sogenannte Domino-Modell erklärt diese Muster mit dem Rotieren von Gesteinsblöcken zwischen den verschiedenen Deformationsbändern. Da das Gestein noch weich ist und die Verformung sehr langsam vor sich geht, verhalten sich diese Blöcke zähflüssig und lassen sich leicht verformen."

Auffällig ist bei den untersuchten Deformationsbändern das Verhältnis zwischen dem Versatz der sich gegeneinander verschiebenden Gesteinsschichten und der Länge der Deformationsbänder. Mit 1:100 bis zu 1:10 sind diese Verhältnisse ungewöhnlich groß. Eine Tatsache, die laut Dr. Exner die Entstehung von Reverse Drag begünstigen könnte.

Obwohl sich die Vorgänge, die Dr. Exner untersucht, in geologischen Tiefen abspielen, ist die praktische Bedeutung ihrer Arbeit unmittelbar erlebbar: Deformationsbänder bilden sich vor allem in porösem Gestein, der aufgrund der vielen Poren auch als Lagerstätte für Öl oder Wasser dient. Deformationsbänder ändern die Porosität und können so die Förderung von Öl oder Wasser beeinflussen. Und selbst in himmlischen Höhen hat dieses FWF-Projekt Bedeutung: Der Kalksandstein, auch als Leithakalk bekannt, des Wiener Stephansdoms stammt aus dem Eisenstadt-Sopron-Becken. Auch seine Porosität - und damit sein Verhalten gegenüber Umwelteinflüssen und Schutzmaßnahmen - wird von Deformationsbändern beeinflusst.

Daten präsentiert auf dem "European Geosciences Union General Assembly 2010" am 2.-7. Mai in Wien

Wissenschaftlicher Kontakt:
Dr. Ulrike Exner
Universität Wien
Department für Geodynamik und Sedimentologie Althanstraße 14 1090 Wien T +43 / 650 / 35 66 948 E ulrike.exner@univie.ac.at
Der Wissenschaftsfonds FWF:
Mag. Stefan Bernhardt
Haus der Forschung
Sensengasse 1
1090 Wien
T +43 / 1 / 505 67 40 - 8111
E stefan.bernhardt@fwf.ac.at
W http://www.fwf.ac.at
Redaktion & Aussendung:
PR&D - Public Relations für Forschung & Bildung Campus Vienna Biocenter 2 1030 Wien T +43 / 1 / 505 70 44 E contact@prd.at W http://www.prd.at

Marta Korinkova | PR&D
Weitere Informationen:
http://www.fwf.ac.at

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Neue Einblicke in das 2004 Sumatra-Erdbeben
14.11.2017 | Technische Universität München

nachricht Folgen des Klimawandels: Oder warum wird das Wasser unter Borkum überwacht?
14.11.2017 | Leibniz-Institut für Angewandte Geophysik

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte