Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kräfte im Untergrund: Deformationsvorgänge in Kiesablagerungen

21.06.2010
Verbiegungen in den Ablagerungsschichten des Eisenstadt-Sopron-Beckens werden durch unregelmäßig verteilte Verformung im umgebenden Sediment bewirkt. Die Ursache sind Gradienten in der Verformungsintensität, die sowohl parallel als auch rechtwinklig zu einer Bruchzone auftreten. Diese Ergebnisse eines vom Wissenschaftsfonds FWF unterstützen Projektes erlauben sowohl ein besseres Verständnis über grundlegende geologische Vorgänge als auch über die Bildung und Struktur von Lagerstätten für Öl und Wasser.

Tektonische Kräfte können schon was bewegen. Der Himalaja oder der pazifische Tiefseegraben belegen das eindrucksvoll. Doch selbst diese wachsen im Jahr nur wenige Millimeter bis Zentimeter. Genau in dieser Dimension bewegen sich auch andere Zeugen geologischer Kräfte - die sogenannten Deformationsbänder.

Sie treten in weichen, porösen Gesteinsschichten, wie Sandstein, auf. Entstehen tun sie dort, wo grobkörnige Gesteine von Scherkräften der darüber- und darunterliegenden Gesteinshorizonte bewegt werden oder eine Volumenveränderung erfahren. Im Gegensatz zu einer sogenannten Verwerfung, bei der die Gesteinsschicht bricht, werden in den Deformationsbändern aber nur Gesteinskörner zermahlen oder neu organisiert. Dabei ändert sich jedoch die Porosität des Gesteins und damit seine Permeabilität für Flüssigkeiten. So tragen Deformationsbänder zur Bildung und Struktur von Öl- oder Wasservorkommen bei. Ihre Bildung und Wirkung auf das umgebende Gestein besser zu verstehen, ist das Ziel eines Projektes am Department für Geodynamik und Sedimentologie der Universität Wien.

DAS KORN MACHTS!
Die Projektleiterin Dr. Ulrike Exner und ihr Team konnten dabei zeigen, dass Deformationsbänder im Eisenstadt-Sopron-Becken nahe des Neusiedlersees aufgrund der relativ groben Körnung einen Gradienten in der Intensität ihrer Verformungen aufzeigen. Dieser Gradient verläuft vom undeformierten Nebengestein hin zum Zentrum des Deformationsbands. Dazu Dr. Exner: "Die hier verantwortlichen Zugspannungen wirken im rechten Winkel auf das Gestein des Deformationsbands. Doch wir haben auch festgestellt, dass es einen Verformungsgradienten parallel zur Orientierung der Bruchzone gibt. Bei diesem ist der größte Versatz in der Mitte des Deformationsbands zu erkennen. Nach oben und unten hin nimmt dieser dann ab." Die Konsequenz dieser beiden unterschiedlich ausgerichteten Verformungsgradienten ist eine Verfaltung der umgebenden Sedimentschichten.
DIE WIDERSINNIGE SCHLEPPUNG
Die weitere Wirkung dieser inhomogenen Deformationen im Gestein erklärt Dr. Exner so: "Die umgebenden Gesteinshorizonte beginnen sich zu verbiegen. Ein Effekt, der als Reverse Drag oder widersinnige Schleppung bezeichnet wird. Bei eng nebeneinanderliegenden Deformationsbändern können sich solche Schleppungen - oder Verdrehungen - sogar überlagern. Dann gibt es zunehmend wildere Muster." Doch selbst für diese Muster gibt es Erklärungsmodelle, wie Dr. Exner weiter ausführt: "Das sogenannte Domino-Modell erklärt diese Muster mit dem Rotieren von Gesteinsblöcken zwischen den verschiedenen Deformationsbändern. Da das Gestein noch weich ist und die Verformung sehr langsam vor sich geht, verhalten sich diese Blöcke zähflüssig und lassen sich leicht verformen."

Auffällig ist bei den untersuchten Deformationsbändern das Verhältnis zwischen dem Versatz der sich gegeneinander verschiebenden Gesteinsschichten und der Länge der Deformationsbänder. Mit 1:100 bis zu 1:10 sind diese Verhältnisse ungewöhnlich groß. Eine Tatsache, die laut Dr. Exner die Entstehung von Reverse Drag begünstigen könnte.

Obwohl sich die Vorgänge, die Dr. Exner untersucht, in geologischen Tiefen abspielen, ist die praktische Bedeutung ihrer Arbeit unmittelbar erlebbar: Deformationsbänder bilden sich vor allem in porösem Gestein, der aufgrund der vielen Poren auch als Lagerstätte für Öl oder Wasser dient. Deformationsbänder ändern die Porosität und können so die Förderung von Öl oder Wasser beeinflussen. Und selbst in himmlischen Höhen hat dieses FWF-Projekt Bedeutung: Der Kalksandstein, auch als Leithakalk bekannt, des Wiener Stephansdoms stammt aus dem Eisenstadt-Sopron-Becken. Auch seine Porosität - und damit sein Verhalten gegenüber Umwelteinflüssen und Schutzmaßnahmen - wird von Deformationsbändern beeinflusst.

Daten präsentiert auf dem "European Geosciences Union General Assembly 2010" am 2.-7. Mai in Wien

Wissenschaftlicher Kontakt:
Dr. Ulrike Exner
Universität Wien
Department für Geodynamik und Sedimentologie Althanstraße 14 1090 Wien T +43 / 650 / 35 66 948 E ulrike.exner@univie.ac.at
Der Wissenschaftsfonds FWF:
Mag. Stefan Bernhardt
Haus der Forschung
Sensengasse 1
1090 Wien
T +43 / 1 / 505 67 40 - 8111
E stefan.bernhardt@fwf.ac.at
W http://www.fwf.ac.at
Redaktion & Aussendung:
PR&D - Public Relations für Forschung & Bildung Campus Vienna Biocenter 2 1030 Wien T +43 / 1 / 505 70 44 E contact@prd.at W http://www.prd.at

Marta Korinkova | PR&D
Weitere Informationen:
http://www.fwf.ac.at

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Die Ostsee als Zeitmaschine
14.05.2018 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

nachricht Erste Bohrung in einen aktiven Unterwasservulkan
09.05.2018 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

Passt eine ultrakalte Wolke aus zehntausenden Rubidium-Atomen in ein einzelnes Riesenatom? Forscherinnen und Forschern am 5. Physikalischen Institut der Universität Stuttgart ist dies erstmals gelungen. Sie zeigten einen ganz neuen Ansatz, die Wechselwirkung von geladenen Kernen mit neutralen Atomen bei weitaus niedrigeren Temperaturen zu untersuchen, als es bisher möglich war. Dies könnte einen wichtigen Schritt darstellen, um in Zukunft quantenmechanische Effekte in der Atom-Ion Wechselwirkung zu studieren. Das renommierte Fachjournal Physical Review Letters und das populärwissenschaftliche Begleitjournal Physics berichteten darüber.*)

In dem Experiment regten die Forscherinnen und Forscher ein Elektron eines einzelnen Atoms in einem Bose-Einstein-Kondensat mit Laserstrahlen in einen riesigen...

Im Focus: Algorithmen für die Leberchirurgie – weltweit sicherer operieren

Die Leber durchlaufen vier komplex verwobene Gefäßsysteme. Die chirurgische Entfernung von Tumoren ist daher oft eine schwierige Aufgabe. Das Fraunhofer-Institut für Bildgestützte Medizin MEVIS hat Algorithmen entwickelt, die die Bilddaten von Patienten analysieren und chirurgische Risiken berechnen. Leberkrebsoperationen werden damit besser planbar und sicherer.

Jährlich erkranken weltweit 750.000 Menschen neu an Leberkrebs, viele weitere entwickeln Lebermetastasen aufgrund anderer Krebserkrankungen. Ein chirurgischer...

Im Focus: Positronen leuchten besser

Leuchtstoffe werden schon lange benutzt, im Alltag zum Beispiel im Bildschirm von Fernsehgeräten oder in PC-Monitoren, in der Wissenschaft zum Untersuchen von Plasmen, Teilchen- oder Antiteilchenstrahlen. Gleich ob Teilchen oder Antiteilchen – treffen sie auf einen Leuchtstoff auf, regen sie ihn zum Lumineszieren an. Unbekannt war jedoch bisher, dass die Lichtausbeute mit Elektronen wesentlich niedriger ist als mit Positronen, ihren Antiteilchen. Dies hat Dr. Eve Stenson im Max-Planck-Institut für Plasmaphysik (IPP) in Garching und Greifswald jetzt beim Vorbereiten von Experimenten mit Materie-Antimaterie-Plasmen entdeckt.

„Wäre Antimaterie nicht so schwierig herzustellen, könnte man auf eine Ära hochleuchtender Niederspannungs-Displays hoffen, in der die Leuchtschirme nicht von...

Im Focus: Erklärung für rätselhafte Quantenoszillationen gefunden

Sogenannte Quanten-Vielteilchen-„Scars“ lassen Quantensysteme länger außerhalb des Gleichgewichtszustandes verweilen. Studie wurde in Nature Physics veröffentlicht

Forschern der Harvard Universität und des MIT war es vor kurzem gelungen, eine Rekordzahl von 53 Atomen einzufangen und ihren Quantenzustand einzeln zu...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

Visual-Computing an Bord der MS Wissenschaft

17.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

48V im Fokus!

21.05.2018 | Veranstaltungsnachrichten

Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

18.05.2018 | Physik Astronomie

Countdown für Kilogramm, Kelvin und Co.

18.05.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics