Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Knick in der Tektonik - Wie Hawaii um die Ecke gebracht wurde

03.04.2009
Wie Perlen reihen sich mehr als 80 unterseeische Vulkane und eine Vielzahl von Inseln entlang der Hawaii-Emperor-Kette. Ein deutlicher Knick in der Mitte ist der einzige Schönheitsfehler.

Lange wurde diese Besonderheit mit einem Richtungswechsel der Pazifischen Kontinentalplatte bei ihrer Wanderung über einen stationären Hotspot - also einen scheinbar ortsfesten Vulkan im Erdinneren - erklärt.

Nach den Ergebnissen eines internationalen Forscherteams, dem auch der LMU-Geophysiker Professor Hans-Peter Bunge angehört, war der für die Hawaii-Emperor-Kette verantwortliche Hotspot aber nicht fixiert, sondern bewegte sich deutlich nach Süden. Vor fast 50 Millionen Jahren blieb er schließlich stehen, während sich die Pazifische Platte auch weiterhin gleichmäßig voranschob - was in Kombination den markanten Knick erzeugte.

Die Bewegungen von Hotspots beruhen auf Zirkulationen im Erdmantel. "Diese Vorgänge sind nicht nur von akademischen Interesse", betont Bunge. "Mantelzirkulationsmodelle helfen, die Kräfte zu verstehen, die auf tektonische Platten wirken. Das ist wiederum essentiell für die Einschätzung der Stressentwicklung an großen tektonischen Verwerfungen, also der Quelle vieler großer Erdbeben." (Science, 3. April 2009)

Der ausgeprägte Knick in der Spur der rund 5.000 Kilometer langen Hawaii-Emperor-Kette ist eine der markantesten topografischen Erscheinungen auf der Erde und ein bestimmendes Merkmal bei Darstellungen des pazifischen Meeresbodens. Lange wurde die Entstehung der Hawaii-Emperor-Kette mit einer 80 Millionen Jahre dauernden Wanderung der Pazifischen Kontinentalplatte über einen Hotspot hinweg erklärt. Hotspots sind tief im Erdinneren verwurzelte Vulkanen, aus denen konstant heißes Material an die Oberfläche drängt. Der Knick sei nach diesem veralteten Szenario entstanden, als die Pazifische Kontinentalplatte relativ abrupt ihre Richtung änderte.

In den letzten 30 Jahren haben sich Geophysiker auch bei der Definition eines globalen Referenzsystems für Plattentektonik auf die scheinbar unveränderliche Lage der Hotspots im Erdmantel verlassen. Doch jüngere Untersuchungen ließen vermuten, dass Hotspots weniger ortsfest sind als bislang angenommen. Ein internationales Forscherteam, dem auch Professor Hans-Peter Bunge vom Department für Geo- und Umweltwissenschaften der Ludwig-Maximilians-Universität (LMU) München angehört, untersuchte nun die Hinweise auf eine deutliche Eigenbewegung der unterirdischen Vulkane - und kann diese nun bestätigen.

"Auch paläomagnetische Beobachtungen legen nahe, dass der Knick der Hawaii-Emperor-Kette keine Folge einer Änderung in der Relativbewegung der Pazifischen Platte ist", so Bunge. "Im Gegenteil, es scheint, als hätte sich der Hotspot zwischen 80 und 40 Millionen Jahren einer stark südwärts gerichteten Eigenbewegung unterzogen, bevor er zu einem kompletten Halt kam." Wird die Spur des Hotspots für diese Eigenbewegung korrigiert, so ergibt sich eine über die letzten 80 Millionen Jahre weitgehend konstante Bewegung der pazifischen Platte. In Kombination mit dem langsamer werdenden Hotspot entstand schließlich der Knick.

Treibende Kraft einer Wanderung der Hotspots ist die Zirkulation von Materie unter der Oberfläche unseres Planeten. "Das Erdinnere ist in konstanter Bewegung", berichtet Bunge. "Über geologische Zeiträume hinweg ist diese Bwegung den Wettermustern unserer Atmosphäre vergleichbar. Diese Muster können leicht zu einer Lageänderung von Hotspots führen. Numerische Simulationen der globalen Zirkulation im Erdmantel erlauben uns heute diese Bewegung in nie zuvor gekanntem Detail nachzuvollziehen."

Die neuen Daten sollen nun auch in Modelle zur Mantelzirkulation einfließen. Denn diese Berechnungen helfen bei der Erklärung der antreibenden und bremsenden Kräfte, die auf tektonische Platten wirken. "Und diese Kräfte müssen wir verstehen, weil sie essentiell sind für die Einschätzung der Stressentwicklung an großen tektonischen Verwerfungen - also der Quelle für viele große Erdbeben auf unserem Planeten", sagt Bunge. Die daraus folgenden Erkenntnisse werden den Wissenschaftlern ermöglichen, ihre Computermodelle zu verbessern, indem sie die Berchnungen anhand von Beobachtungen überprüfen. (hp/suwe)

Weiterführende Informationen zu den Kalkulationen finden Sie unter http://www.earthmodels.eu.

Publikation:
"The Bent Hawaiian-Emperor Hotspot Track: Inheriting the Mantle Wind",
John Tarduno, Hans-Peter Bunge, Norm Sleep, Ulrich Hansen,
Science, 3. April 2009
Ansprechpartner:
Professor Hans-Peter Bunge
Department für Geo- und Umweltwissenschaften der LMU
Tel.: 089 / 2180 - 4225
Fax: 089 / 2180 - 4205
E-Mail: hans-peter.bunge@geophysik.uni-muenchen.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.earthmodels.eu
http://www.geophysik.uni-muenchen.de/Members/bunge
http://www.uni-muenchen.de

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Der steile Aufstieg der Berner Alpen
24.03.2017 | Universität Bern

nachricht Internationales Team um Oldenburger Meeresforscher untersucht Meeresoberfläche
21.03.2017 | Carl von Ossietzky-Universität Oldenburg

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise