Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Klimawissenschaftler entdecken neue Schwachstelle des antarktischen Eisschildes

10.05.2012
Das Filchner-Ronne-Schelfeis im antarktischen Weddellmeer wird noch in diesem Jahrhundert rapide zu schmelzen beginnen und als Barriere für nachrutschendes Inlandeis wegfallen.

Diese Vorhersagen treffen Klimaforscher des Alfred-Wegener-Institutes für Polar- und Meeresforschung in der Helmholtz-Gemeinschaft in der kommenden Ausgabe des britischen Wissenschaftsmagazins „Nature“. Sie widerlegen damit die weit verbreitete Annahme, das Schelfeis des Weddellmeeres bliebe aufgrund der Randlage des Meeres von den unmittelbaren Einflüssen der Erderwärmung verschont.


Kante des Filchner-Ronne Schelfeises im Weddellmeer. Foto: Ralph Timmermann, Alfred-Wegener-Institut

Die Forschungsergebnisse der Klima-Modellierer vom Alfred-Wegener-Institut dürften die Fachwelt überraschen. Gingen die meisten Experten doch bisher davon aus, dass die Folgen der Erderwärmung für die Antarktis vor allem im Amundsenmeer und damit in der Westantarktis zu spüren seien.

„Das Weddellmeer hatte niemand so richtig auf der Rechnung, weil alle glaubten, seine Wassermassen seien im Gegensatz zum Amundsenmeer kalt genug, um dem Schelfeis nichts anhaben zu können. Wir aber zeigen, dass die warmen Wassermassen des Weddellmeeres in den kommenden Jahrzehnten dem Filchner-Ronne-Schelfeis mächtig zusetzen werden“, sagt Dr. Hartmut Hellmer, Ozeanograf am Alfred-Wegener-Institut und Erstautor der Studie.

Mit Hilfe verschiedener Modellberechnungen konnten er und seine Kollegen Dr. Frank Kauker, Dr. Ralph Timmermann und Dr. Jürgen Determann sowie Dr. Jamie Rae vom britischen Met Office Hadley Centre zeigen, dass es im Zuge des Temperaturanstieges über dem Weddellmeer innerhalb der nächsten sechs Jahrzehnte zu einer Kettenreaktion kommen kann, an deren Ende vermutlich große Inlandeis-Massen in den Ozean abrutschen können.

Ausgelöst wird diese Kettenreaktion von steigenden Lufttemperaturen über dem südöstlichen Weddellmeer. „Unsere Modelle zeigen, dass die wärmere Luft dazu führen wird, dass das heute noch solide Meereis im Weddellmeer in wenigen Jahrzehnten dünner und damit brüchiger und mobiler wird“, sagt Frank Kauker. Wenn dies geschehe, werden sich grundlegende Transportprozesse verändern. „Es führt dazu, dass eine hydrographische Front im Weddellmeer aufbricht, die bis jetzt verhindert, dass warmes Wasser unter das Schelfeis gelangt. Nach unseren Berechnungen aber wird sich diese schützende Barriere bis zum Ende dieses Jahrhunderts auflösen“, erklärt Hartmut Hellmer.

Der Einstrom wärmeren Wassers unter das Filchner-Ronne-Schelfeis lässt das Eis von unten schmelzen. „Die größten Schmelzraten erwarten wir nahe der sogenannten Aufsetzlinie. So nennt man jene Zone, in der das Schelfeis auf dem Meeresboden aufsetzt und in den Gletscher übergeht. An dieser Stelle schmilzt das Filchner-Ronne-Schelfeis heute um etwa 5 Meter pro Jahr. Zur nächsten Jahrhundertwende werden die Schmelzraten auf bis zu 50 Meter pro Jahr ansteigen“, sagt Jürgen Determann.

Wie im Falle einer solchen Megaschmelze des Schelfeises das dahinter gelagerte Inlandeis reagieren wird, untersucht Hellmers Kollege Jürgen Determann derzeit. Eine Vermutung liegt jedoch nahe: „Schelfeise sind für das nachgelagerte Inlandeis wie ein Korken in der Flasche. Sie bremsen die Eisströme, weil sie in den Buchten überall anecken und zum Beispiel auf Inseln aufliegen. Schmelzen jedoch die Schelfeise von unten, werden sie so dünn, dass die bremsenden Flächen immer geringer werden und sich das dahinterliegende Eis in Bewegung setzt“, sagte Hartmut Hellmer. „Sollten die erhöhten Schmelzraten komplett durch nachfließendes Inlandeis kompensiert werden, entspräche dieser Massenverlust einem zusätzlichen Meeresspiegelanstieg von 4,4 Millimeter pro Jahr“, ergänzt Jürgen Determann. Nach neuen, auf Satellitendaten basierenden Abschätzungen, die Anfang Februar 2012 ebenfalls in Nature veröffentlicht wurden, betrug der durch Gletscher- und Eisschelfschmelzen bedingte Meeresspiegelanstieg in den Jahren 2003 bis 2010 etwa 1,5 Millimeter pro Jahr. Dazu addiert werden zudem etwa 1,7 Millimeter, die der Meeresspiegel aufgrund der thermischen Ausdehnung der Ozeane pro Jahr ansteigt.

Die Vorhersagen der aktuellen Studie basieren auf unabhängigen Berechnungen der Klimamodelle BRIOS (Bremerhaven Ice - Ocean - Simulations) und FESOM (Finite Element Sea Ice-Ocean Model). Als Ausgangswerte hatten die Wissenschaftler atmosphärische Vorhersagen des britischen Met Office Hadley Centre in Exeter genutzt. Darunter waren zum Beispiel Angaben zur zukünftigen Entwicklung des Windes und der Temperatur in der Antarktis. Die Aussagekraft der Modelle haben Hartmut Hellmer und seine Kollegen gleich mehrfach überprüft: „Wir haben das BRIOS-Modell im Jahr 1860 gestartet, um zu sehen, ob seine Ergebnisse für die Jetztzeit die Realität auch richtig abbilden. Und es hat sich gezeigt, dass diese Bedingung sehr gut erfüllt wird. So liegen zum Beispiel die von BRIOS vorhergesagten Wassertemperaturen für das Weddellmeer dicht an dem, was wir heute tatsächlich messen“, sagt Ralph Timmermann und ergänzt: „Das BRIOS-Modell ist in den vergangenen Jahren mehrfach verifiziert worden. Es sagt Eisdickenkonzentrationen, Strömungen und Driftrichtungen von Eisbergen treffend voraus. Und FESOM ist auf dem besten Weg, es BRIOS gleich zu tun. Nur besitzt es eine viel höhere Auflösung, weshalb wir lange warten müssen, bis die Computer ein Jahrhundert berechnet haben. BRIOS braucht für ein Jahrhundert nur knapp eine Woche.“

Die Studie wurde im Rahmen des EU-finanzierten Forschungsprogramms „Ice2sea“ durchgeführt. Es vereint Wissenschaftler aus 24 führenden Forschungsinstitutionen der Europäischen Union sowie aus Chile, Norwegen und Island. Gemeinsam wollen die Wissenschaftler die Wechselwirkungen zwischen Eis und Klima entschlüsseln und auf diese Weise genauere Vorhersagen über die Auswirkungen der Eisschmelze auf den Meeresspiegel ermöglichen. Mehr Informationen zum Ice2sea-Projekt finden Sie unter: http://www.ice2sea.eu

Der Titel der Originalveröffentlichung lautet:
Hartmut H. Hellmer, Frank Kauker, Ralph Timmermann, Jürgen Determann, Jamie Rae: Twenty-first-century warming of a large Antarctic ice shelf cavity by a redirected coastal current. Nature 10 May 2012, Vol 485, page 225. DOI: 10.1038/nature11064

Das Alfred-Wegener-Institut forscht in der Arktis, Antarktis und den Ozeanen der mittleren und hohen Breiten. Es koordiniert die Polarforschung in Deutschland und stellt wichtige Infrastruktur wie den Forschungseisbrecher Polarstern und Stationen in der Arktis und Antarktis für die internationale Wissenschaft zur Verfügung. Das Alfred-Wegener-Institut ist eines der 18 Forschungszentren der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands.

Ralf Röchert | idw
Weitere Informationen:
http://www.ice2sea.eu
http://www.awi.de
http://www.awi.de/de/aktuelles_und_presse/pressemitteilungen/fotos_mit_sperrfrist/pressemeldung_2012_10_mai/

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Der Salzwasser-Wächter auf der Darßer Schwelle
19.09.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie