Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Klimaforschung: Fehler gesucht & gefunden – modernste Messmethode optimiert

23.05.2013
Eine Messmethode zur Analyse physikalischer Eigenschaften der Erdatmosphäre, die Signale von GPS-Satelliten nutzt, ist um einen systematischen Fehler ärmer – dank eines Projekts des FWF.

In diesem wurde die sogenannte Radio-Okkultations-Methode, die auf Phasenverschiebungen elektromagnetischer GPS-Signale beruht, systematisch auf Fehlerquellen hin untersucht. Eine Wesentliche wurde durch einen Tag-Nacht-Vergleich von Messdaten aus zehn Jahren gefunden. Diese Ergebnisse wurden nun gemeinsam mit einem Korrekturvorschlag veröffentlicht und ermöglichen eine höhere Genauigkeit der als zukünftiger "Goldstandard" in der Klimaforschung gehandelten Messmethode.


GPS-Satelliten eignen sich zur Klimaforschung – wenn man versteht, was mit ihren Signalen in der Atmosphäre passiert. © Wegener Center

Zuerst funktionierte es für den Mars, dann für andere Planeten – nur auf der Erde dauerte es: die Nutzung der Radio-Okkultation (RO). Dabei handelt es sich um eine Methode, die Auskunft über die Beschaffenheit der Atmosphäre gibt. Sie basiert auf der Phasenverschiebung von Radiosignalen, die durch den Brechungsindex einer Atmosphäre verursacht wird. So wie Wasser den Pfad des Lichtes bricht, wirkt die Atmosphäre auf ein Radiosignal – ein Effekt, der messbar ist und von der Beschaffenheit der Atmosphäre abhängt. Dank zahlreicher GPS-Satelliten steht für die Erde ein umfassendes Messsystem zur Verfügung. Doch vor dessen optimaler Nutzung für die Klimaforschung muss erst eine rigorose Fehleranalyse erfolgen – genau die wurde an der Universität Graz nun durchgeführt.

Unbekannte Atmosphäre

Die Bedeutung seiner Arbeit erläutert Projektleiter Prof. Ulrich Foelsche vom Wegener Center für Klima und Globalen Wandel dabei so: "Obwohl das Klima von der freien Atmosphäre maßgeblich mitbestimmt wird, wissen wir über deren Entwicklung noch zu wenig. RO bietet eine völlig neue Möglichkeit, langfristig und kontinuierlich hochakkurate Daten zu Dichte, Druck, Temperatur und Feuchtigkeit zu sammeln. Doch Fragen zum Vorhandensein systematischer Fehler müssen erst noch geklärt werden. Das tun wir."

Vor Kurzem gelang es, einen wesentlichen Einfluss festzustellen, der Messdaten verfälscht und auf die Sonnenaktivität zurückzuführen ist. Zum Verständnis dieses Effekts muss berücksichtigt werden, dass GPS-Satelliten in 20.000 km Höhe kreisen. Für RO werden ihre Signale von erdnäheren Satelliten empfangen – und durchwandern dabei sowohl die obere, ionisierte als auch die untere, neutrale Atmosphäre. Für die Klimaforschung sind vor allem die Daten aus der unteren, neutralen Atmosphäre relevant. Tatsächlich wird das Signal aber schon in der höheren Atmosphäre durch ionisierte Partikel beeinflusst – ein Effekt, der bei der Auswertung korrigiert werden muss.

Schattenseite der Sonnenaktivität

Die vor Kurzem publizierten Ergebnisse der Gruppe um Prof. Foelsche belegen nun, dass diese Korrektur nicht so einfach ist, wie bisher angenommen. Bekannt war, dass die Größe der Signalablenkung in der ionisierten Atmosphäre am Tag anders ist als in der Nacht. Die Auswertung von Datenmaterial zweier Satelliten-Missionen (COSMIC, CHAMP) aus zehn Jahren zeigte nun, dass die Größe der Tag-Nacht-Unterschiede variiert. Ursächlich für diese Variationen ist die jeweilige Sonnenaktivität. In Phasen hoher Sonnenaktivität nimmt die Ionisierung der oberen Atmosphäre während des Tages stärker zu als während Phasen geringerer Aktivität – was sich unterschiedlich auf die Ablenkung des Radiosignals auswirkt.

Nach Erkennen dieser Variationen entwarf das Grazer Team eine Formel, die zukünftig eine bessere Korrektur der Messwerte erlaubt – und die im Rahmen von Modellrechnungen ihre Wirksamkeit bereits bewiesen hat. Neben der jeweils aktuellen Sonnenaktivität berücksichtigt diese Formel auch den Breitengrad der Erde, an dem die Messung erfolgt – ein Faktor, der sich ebenfalls auf die Größe der Ionisierung der Atmosphäre auswirkt.

Insgesamt wird mit den Berechnungen in diesem FWF-Projekt dringend notwendige grundlegende Arbeit geleistet. Denn RO bietet die Möglichkeit, umfassende Mengen an Daten über den Zustand der Erdatmosphäre mit bisher unbekannter Genauigkeit zu sammeln – und gerade deswegen ist eine kritische Analyse über mögliche Fehlerquellen wichtig.

Originalpublikation: J. Danzer, B. Scherllin-Pirscher and U. Foelsche. Systematic residual ionospheric errors in radio occultation data and a potential way to minimize them. Atmos. Meas. Tech. Discuss., 6, 1979 - 2008, 2013

Wissenschaftlicher Kontakt
Prof. Ulrich Foelsche
Universität Graz
Institut für Physik
Bereich Geophysik, Astrophysik und Meteorologie
Universitätsplatz 5
8010 Graz
Wegener Center für Klima und Globalen Wandel
T +43 / 316 / 380 - 8590 oder 8433
E ulrich.foelsche@uni-graz.at
Der Wissenschaftsfonds FWF
Mag. Stefan Bernhardt
Haus der Forschung
Sensengasse 1
1090 Wien
T +43 / (0)1 / 505 67 40 - 8111
Redaktion & Aussendung
PR&D - Public Relations für Forschung & Bildung
Mariannengasse 8
1090 Wien
T +43 / (0)1 / 505 70 44
E contact@prd.at
W http://www.prd.at

Judith Sandberger | PR&D
Weitere Informationen:
http://www.fwf.ac.at

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Internationales Team um Oldenburger Meeresforscher untersucht Meeresoberfläche
21.03.2017 | Carl von Ossietzky-Universität Oldenburg

nachricht Weniger Sauerstoff – ist Humboldts Nährstoffspritze in Gefahr?
17.03.2017 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen