Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wenn sich das Klima abkühlt, werden Berge schneller abgetragen

19.12.2013
Geowissenschaftler der Universität Tübingen erforscht global den Zusammenhang zwischen Temperaturkurve und Erosionsrate

Die Landschaftsformen der Erdoberfläche spiegeln das Gleichgewicht zwischen den Bewegungen der Kontinentalplatten, dem Klima und ihrer Wechselwirkung durch Erosion wider. Die Einflüsse einzelner Faktoren sind dabei schwer voneinander zu trennen.

Professor Todd Ehlers vom Fachbereich Geowissenschaften der Universität Tübingen, Geologie und Geodynamik, hat in Zusammenarbeit mit internationalen Kollegen am Beispiel der Abkühlung im späten Känozoikum vor zwei bis drei Millionen Jahren untersucht, wie Klima und Erosion zusammenhängen. Er hat dabei zahlreiche Gesteinsproben mithilfe thermochronometrischer Verfahren datiert und so ein genaues Bild der Erosion in Gebirgsregionen weltweit erhalten.

Danach stieg die Erosionsrate der Berge vor etwa sechs Millionen Jahren deutlich an und beschleunigte sich während der globalen Abkühlung des Klimas vor rund zwei Millionen Jahren weiter. Bei der verstärkten Abtragung des Untergrunds im kalten Klima spielen Gletscher eine wichtige Rolle. Die Forschungsergebnisse werden in der Fachzeitschrift Nature veröffentlicht.

Um die Erosionsprozesse in Gebirgen genauer als bisher zu quantifizieren, haben die Forscher thermochronometrische Daten von rund 18.000 Gesteinsproben aus aller Welt zusammengetragen. Das Gestein gelangt durch Erosion aus der Tiefe, den oberen zehn Kilometern der Erdkruste, an die Erdoberfläche und kühlt dabei ab. Bei der Thermochronologie machen sich die Forscher zunutze, dass das in kleinen Mengen im Gestein enthaltene radioaktive Uran zeitabhängig zerfällt. Unterhalb einer sogenannten Schließungstemperatur reichert das Gestein die Produkte dieses radioaktiven Zerfalls an. Über die Messung der Zerfallsprodukte können die Forscher errechnen, wie schnell das Gestein abkühlte und wie lange es brauchte, um von einer bestimmten Tiefe an die Oberfläche zu gelangen. Daraus wird die Erosionsrate bestimmt. Durch den breiten Ansatz mit weltweiter Verteilung der Probenpunkte ließen sich in der Studie regionale Einflüsse der Plattentektonik, also der Bewegungen der Kontinentalplatten, vernachlässigen. So konnten die Forscher die Erosionsrate direkt mit dem Klima korrelieren.

„Global gesehen überspannte die Erosionsrate in den vergangenen acht Millionen Jahren vier Größenordnungen, sie reichte von einem Hundertstel Millimeter bis zu zehn Millimetern pro Jahr“, sagt Todd Ehlers. Vor sechs Millionen Jahren sei die Erosionsrate weltweit auf allen Breitengraden gestiegen, am stärksten in vereisten Gebirgsregionen. Dies deutet darauf hin, dass Gletschern bei Erosionsprozessen global eine große Bedeutung zukommt.

Vor zwei Millionen Jahren stieg die Erosionsrate weiter an, am stärksten in den Breitengraden über 30 wie zum Beispiel in den europäischen Alpen, in Patagonien in Südamerika, Alaska, der Südinsel Neuseelands und den Küstengebirgen im heutigen kanadischen British Columbia. Diese Gebiete sind tektonisch sehr unterschiedlich aktiv, gemeinsam ist ihnen aber, dass sie in den vergangenen paar Millionen Jahren vergletschert waren. Im Vergleich mit der Erosionsrate vor sechs Millionen Jahren verdoppelte sie sich beim Wechsel vom Pliozän zum Pleistozän nochmals. „Die steigende Erosionsrate und die weitere Abkühlung des Klimas im späten Känozoikum sowie die erhöhte Aktivität von Gletschern mit stärkerem Sedimentfluss standen im klaren Zusammenhang miteinander“, fasst Todd Ehlers die Entwicklung zusammen. Diese Ergebnisse beinhalten allgemein wichtige Implikationen für die Rückkoppelung zwischen dem globalen Klima und der Erosion.

Originalpublikation:
Frédéric Herman, Diane Seward, Pierre G. Valla, Andrew Carter, Barry Kohn, Sean D. Willett, Todd A. Ehlers: Worldwide acceleration of mountain erosion under a cooling climate. Nature, 19. Dezember 2013.
Kontakt:
Prof. Dr. Todd Ehlers
Universität Tübingen
Mathematisch-Naturwissenschaftliche Fakultät
Fachbereich Geowissenschaften
Telefon +49 7071 29- 73152
todd.ehlers[at]uni-tuebingen.de

Dr. Karl Guido Rijkhoek | idw
Weitere Informationen:
http://www.uni-tuebingen.de

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Der Salzwasser-Wächter auf der Darßer Schwelle
19.09.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

OLED auf hauchdünnem Edelstahl

21.09.2017 | Messenachrichten

Weniger (Flug-)Lärm dank Mathematik

21.09.2017 | Physik Astronomie

In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät

21.09.2017 | Geowissenschaften