Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kein ewiges Eis mehr in der Arktis

17.12.2012
Russische und deutsche Wissenschaftler ziehen am GEOMAR Bilanz des Projekts „Laptewsee“

Seit 1991 beobachten deutsche und russische Wissenschaftler gemeinsam den Klimawandel in der Arktis. In den vergangenen fünf Jahren haben sie sich vor allem mit der „Eisfabrik“ in der sibirischen Laptewsee beschäftigt.


Die sibirische Laptewsee und die Framstraße zwischen Spitzbergen und Grönland sind durch die Transpolardrift verbunden. Auch hier sind bereits Auswirkungen des Klimawandels zu beobachten.

Grafik: R. Spielhagen, AdW Mainz/GEOMAR

Während eines Abschlussworkshops am GEOMAR Helmholtz Zentrum für Ozeanforschung Kiel ziehen 50 Wissenschaftler aus beiden Ländern Bilanz und blicken in die Zukunft der Arktis-Forschung. Zusätzlich stellen Studenten des deutsch-russischen Studienganges POMOR ihre Abschlussarbeiten vor.

„Rekordschmelze in der Arktis“ – so oder ähnlich titelten Mitte September 2012 viele Medien. Hintergrund waren Satellitenbeobachtungen des Nationalen Schnee- und Eisdatenzentrums der USA (NSIDC). Sie bestätigten, dass das arktische Meereis die geringste Ausdehnung seit Beginn der systematischen Beobachtung überhaupt hatte. Das bisherige Rekordjahr 2007 wurde noch einmal deutlich unterboten. Für Wissenschaftler wie Dr. Heidemarie Kassens vom GEOMAR Helmholtz Zentrum für Ozeanforschung Kiel war diese Entwicklung allerdings keine große Überraschung.
Die Arktisforscherin gehört zu den Koordinatoren des deutsch-russischen Projektes „Laptewsee“, das in den vergangenen fünf Jahren die Entwicklung in den ostsibirischen Schelfmeeren genau untersucht hat. Dabei hat sie selbst etliche Expeditionen in die Region geleitet. „Der Wandel war von Jahr zu Jahr deutlicher“, sagt sie. In dieser Woche treffen sich 50 Wissenschaftler aus Deutschland und Russland am GEOMAR in Kiel, um ein Fazit des „Laptewsee“-Projektes zu ziehen und zukünftige Arktis-Forschungen zu planen.

Die Laptewsee gehört zu den verhältnismäßig flachen sibirischen Schelfmeeren, die einen erheblichen Einfluss auf das Klimageschehen und die Ökologie der gesamten Arktis haben. Eine besondere Rolle spielt die Laptewsee-Polynja, ein System freier Wasserflächen zwischen dem festen Küsteneis und dem freien Treibeis des arktischen Ozeans. Diese freien Wasserflächen, die auch im Winter nicht komplett zufrieren, sind die größte Eisfabrik des Nordpolarmeeres. Damit sind sie von großer Bedeutung für die Ozeanzirkulation und auch als lebenserhaltende Futterquelle für die Tierwelt. Außerdem sind sie ökonomisch wichtig für die Schifffahrt entlang der Nordostpassage und damit für den potentiellen Zugang zu Ressourcen.

Die gemeinsamen Messkampagnen der russischen und deutschen Forscher in den vergangenen Jahren belegen: Die Durchschnittstemperatur des Meerwassers im arktischen Sommer ist um drei bis vier Grad Celsius angestiegen. Der Sommer an der sibirischen Küste ist um drei bis vier Wochen länger geworden, weil der Frühling früher und der Beginn der Meereisbildung im Herbst später einsetzt. „Das spiegelt sich auch in der Ökologie. In der Laptewsee heimische Planktonarten werden beispielsweise zunehmend durch Arten aus dem Atlantik verdrängt“, erklärt Dr. Ekaterina Abramova vom Lena-Delta-Reservat aus Tiksi (Russland). Und das mehrjährige Eis, das also über mehrere Sommer erhalten bleibt und das fundamental für den polaren Lebensraum ist, ist aus der sibirischen Arktis verschwunden. „Die längeren Sommer haben außerdem Einfluss auf die Menschen. Während früher schwere Herbststürme einfach über das feste Eis fegten, können jetzt Wellen schwere Schäden an der dortigen Infrastruktur anrichten“, so Dr. Kassens.

Ab 2013 wollen die Wissenschaftler nun die Auswirkungen auf die gesamte Arktis untersuchen. Dazu schlagen sie den Bogen zwischen dem Untersuchungsgebiet Laptewsee einerseits und der Framstraße andererseits. Diese Meeresstraße zwischen Spitzbergen und Grönland ist die einzige Tiefwasserverbindung zwischen dem Arktischen Ozean und dem Atlantik. Laptewsee und Framstraße sind durch die Transpolardrift verbunden, die das in den sibirischen Küstengewässern gebildete Eis vorbei am Nordpol und durch die Framstraße in den Atlantik transportiert. „Das Alfred-Wegener-Institut für Polar- und Meeresforschung betreibt in der Framstraße das Tiefsee-Langzeitobservatorium HAUSGARTEN, während das Laptewsee-Projekt den Ursprung der Transpolardrift sehr genau untersucht hat. Ziel der kommenden Jahre ist es, ausgehend vom Start- und Endpunkt der Transpolardrift die Auswirkungen des Klimawandels auf die gesamte Arktis zu untersuchen“, erklärt Dr. Jens Hölemann vom Alfred-Wegener-Institut in Bremerhaven.

Noch vor dem eigentlichen Workshop trafen sich am Wochenende in Kiel die Studenten des deutsch-russischen Studienganges POMOR und stellten ihre Abschlussarbeiten vor. Auch darin ging es vor allem um ozeanographische, physikalische, chemische und biologischen Auswirkungen des globalen Wandels auf die Arktis. POMOR ist ein zweijähriger, interdisziplinärer Studiengang für Arktisstudien, der an der Staatlichen Universität St. Petersburg sowie an den Universitäten Hamburg, Bremen, Kiel und Potsdam durchgeführt wird. Am Ende steht ein Master of Science. „Es ist wichtig, qualifizierten Nachwuchs für die Polarforschung auszubilden. Denn Fragen, die uns in diesem Zusammenhang beschäftigen, werden in den kommenden Jahren noch drängender werden“, betont Dr. Kassens.

Andreas Villwock | idw
Weitere Informationen:
http://www.geomar.de/
http://www.geomar.de/go/polynja
http://www.awi.de/

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Bessere Klimasimulationen möglich
28.07.2016 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

nachricht Neue Erkenntnisse zu Bridgmanit, einem Hauptbestandteil unseres Planeten
28.07.2016 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Bildgebungsmethode macht Sauerstoffgehalt in Gewebe sichtbar

Wie blickt man in den menschlichen Körper, ohne zu operieren? Die Suche nach neuen Lösungen ist nach wie vor eine wichtige Aufgabe der Medizinforschung. Eine der großen Herausforderungen auf diesem Feld ist es, Sauerstoff in Gewebe sichtbar zu machen. Ein Team um Prof. Vasilis Ntziachristos, Inhaber des Lehrstuhls für Biologische Bildgebung an der Technischen Universität München (TUM) und Direktor des Instituts für Biologische und Medizinische Bildgebung am Helmholtz Zentrum München, hat dazu einen neuen Ansatz entwickelt.

Einen Königsweg, um den Sauerstoffgehalt in Gewebe sichtbar zu machen, schien es bislang nicht zu geben. Viele unterschiedliche Verfahren wurden ausprobiert,...

Im Focus: Wie biologische Vielfalt das Ohr fit macht

Göttinger Hörforschung mit neuen Erkenntnissen: Das Ohr setzt Synapsen mit verschiedenen Eigenschaften ein, um unterschiedlich lauten Schall zu verarbeiten. Forschungsergebnisse veröffentlicht in der Fachzeitschrift „Proceedings of the National Academy of Sciences“

Der menschliche Hörsinn verarbeitet einen immensen Bereich an Lautstärken. Wie schafft es das Ohr, etwa über eine Million Schalldruck-Variationen zu...

Im Focus: Ultrakompakter Photodetektor

Der Datenverkehr wächst weltweit. Glasfaserkabel transportieren die Informationen mit Lichtgeschwindigkeit über weite Entfernungen. An ihrem Ziel müssen die optischen Signale jedoch in elektrische Signale gewandelt werden, um im Computer verarbeitet zu werden. Forscher am KIT haben einen neuartigen Photodetektor entwickelt, dessen geringer Platzbedarf neue Maßstäbe setzt: Das Bauteil weist eine Grundfläche von weniger als einem Millionstel Quadratmillimeter auf, ohne die Datenübertragungsrate zu beeinträchtigen, wie sie im Fachmagazin Optica nun berichten. (DOI: 10.1364/OPTICA.3.000741)

Die neuentwickelten Photodetektoren, die weltweit kleinsten Photodetektoren für die optische Datenübertragung, eröffnen die Möglichkeit, durch integrierte...

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: Neues Forschungsnetzwerk für Mikrobiomforschung

Mikroben und Viren haben weitreichenden Einfluss auf die Gesundheit von Mensch und Tier. Die neu gegründete "Austrian Microbiome Initiative" (AMICI) fördert die nationale Mikrobiomforschung und vernetzt MedizinerInnen und ForscherInnen verschiedenster Fachrichtungen zur Nutzung von Synergien.

Bakterien, Archaeen, Pilze, Viren – Milliarden von Mikroorganismen leben in Symbiose in und auf Menschen und Tieren. Diese mikroskopisch kleinen Lebewesen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

BAuA lädt zur Konferenz „Arbeiten im Büro der Zukunft“ ein

29.07.2016 | Veranstaltungen

Fachkongress zu additiven Fertigungsverfahren am 14. und 15. September in Aachen

28.07.2016 | Veranstaltungen

Rheumatologen tagen in Frankfurt: Mehr Forschung für Rheuma gefordert

28.07.2016 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forschung gibt Impulse für Innovationen

29.07.2016 | Förderungen Preise

Molekulare Störenfriede statt Antibiotika? Wie Proteine Kommunikation zwischen Bakterien verhindern

29.07.2016 | Biowissenschaften Chemie

Internationales Forscherteam deckt grundlegende Eigenschaften des Spin-Seebeck-Effekts auf

29.07.2016 | Physik Astronomie