Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kalte Quellen am Meeresboden: Vermehrter Sauerstoffverbrauch durch Methan

29.08.2013
Methan-Emissionen aus der Tiefsee

An manchen Stellen des Meeresbodens, besonders an Kontinentalhängen in Wassertiefen von über 1000 Metern sorgt ein stetiger Ausstrom von Methan dafür, dass sich Oasen des Lebens entwickeln können. Das Methan stammt aus den Tiefen des Meeresbodens und dient Mikroorganismen als Energiequelle.


Bakterienmatten, Haakon Mosby Schlammvulkan, 1250 m Wassertiefe, Barentssee
ROV QUEST, MARUM, Univ. Bremen


Barentssee Muschel-Gemeinschaften an Methanquellen des Afrikanischen Kontinentalrands
ROV QUEST, MARUM, Univ. Bremen

Jetzt haben sich zwei Bremer Wissenschaftler die Gasaustritte an diesen kalten Quellen genauer angeschaut und weltweit bilanziert. Bis zu 80% des potentiellen Treibhausgases an kalten Quellen wird von marinen Lebewesen oxidiert. Weil mehr Methan verzehrt als nach gängigen Vorstellungen gebildet wird, vermuten die Autoren weitere kilometertief gelegene Methanquellen.

Prof. Dr. Antje Boetius und Dr. Frank Wenzhöfer, beide Wissenschaftler am Max-Planck-Institut für Marine Mikrobiologie und am Alfred-Wegener-Institut für Polar- und Meeresforschung schätzen, dass es weltweit zehntausende von kalten Quellen an Kontinentalrändern gibt, die jährlich bis zu 20 Millionen Tonnen Methan abgeben können und einer bunte Vielfalt von Röhrenwürmern, Muscheln und Krebsen ein Leben fernab vom Licht der Sonne ermöglichen. Im Rahmen der Forschungsarbeiten des Exzellenzclusters MARUM der Universität Bremen haben sie sich mit den Umsätzen von Methan und Sauerstoff in der Tiefsee beschäftigt.

Kalte Quellen und Methan

Den Forschern ist es wichtig, den Weg des potentiellen Treibhausgases Methan zu verstehen. Wie entsteht es, wohin geht es, wo sind die Lagerstätten, welche Prozesse sorgen für seinen Verbrauch und wann kommt es in die Atmosphäre?

Prof. Antje Boetius erläutert: „Methan entsteht hauptsächlich durch mikrobiellen Abbau organischer Substanzen unter Sauerstoffabschluss, also Bedingungen, wie sie im Meeresboden der Kontinentalränder vorkommen, oder durch thermische Prozesse im Erdmantel. An manchen Stellen wird das Gas aus dem Untergrund gepresst und bahnt sich seinen Weg aufwärts bis zum Meeresboden und ins darüber liegende Wasser, oder gar bis in die Atmosphäre. Das sind die sogenannten kalten Quellen, aus denen im Gegensatz zu den spektakulären 400 Grad heißen Hydrothermalquellen nur mäßig erwärmtes Wasser strömt.“

Etwa ein bis fünf Prozent aller Methanemissionen in die Atmosphäre stammen aus den Tiefseequellen. Die kalten Quellen sind das Ergebnis von tektonischen Bewegungen an aktiven Kontinentalrändern oder einfach nur durch Unterschiede in der Dichte; über Risse im Meeresboden gelangt dann das Gas an die Oberfläche und tritt aus dem Meeresboden aus. Dabei können die Austrittslöcher nicht unterschiedlicher sein, die Durchmesser reichen von Zentimeter breiten Poren bis zu Kilometern bei den Schlammvulkanen. Es gibt auch eine feste Form des Methans. Bei hohem Druck und niedrigen Temperaturen kann sich Methanhydrat bilden, eine Form, die dem biologischen Kreislauf nicht direkt zur Verfügung steht.

Methan-Filter am Meeresboden

Zum Glück für die menschliche Zivilisation strömt Methan nicht ungehindert aus dem Meeresboden in die Atmosphäre, denn die Natur nutzt auch diese Energiequellen sehr effizient. Bekannt sind zwei Hauptwege. Dort, wo Sauerstoff vorhanden ist, verwenden Mikroorganismen diesen, um das Methan zu Kohlendioxid zu verbrennen. Im Gegensatz zu dieser „aeroben“ Oxidation von Methan ist bei der sauerstofffreien „anaeroben“ Oxidation von Methan kein molekularer Sauerstoff beteiligt. Besondere mikrobielle Lebensgemeinschaften verwenden das im Meerwasser reichlich vorhandene Sulfat, um das Methan zu verbrauchen. Das toxische Produkt – stinkender Schwefelwasserstoff - wird wiederum von weiteren Mikroorganismen mit Sauerstoff veratmet. So greifen beide Prozesse in die Sauerstoffbilanz ein.

Dr. Frank Wenzhöfer erläutert: „Wir haben uns den Sauerstoffverbrauch der Lebensgemeinschaften am Meeresboden an und um diese kalten Quellen angeschaut. Verbraucher sind freilebende Mikroorganismen, aber auch solche in symbiontischen Gemeinschaften mit Muscheln und Röhrenwürmern. Diese Tiere versorgen ihre Bakterien mit Sauerstoff, um von ihnen Energie zu erhalten. Sie können dadurch unglaublich dichte Biomassen bilden. Der Sauerstoffverbrauch direkt an diesen Quellen ist dadurch im Vergleich mit der methanarmen Nachbarschaft bis zu hundertfach erhöht.“

Weitere Kohlenstoffreservoirs in der Tiefe

Die weltweite Methan-Bilanz ergibt auch, dass mehr Methan im oberen Kilometer des Meeresbodens verbraucht wird als durch mikrobielle Prozesse erzeugt werden kann. Man schätzt, dass sich dort maximal 10-20 Millionen Tonnen Kohlenstoff jährlich bilden. Doch werden ja auch in wesentlich größeren Tiefen noch Methan bildende Mikroorganismen vermutet. In Tiefen von 1-4 km unter dem Meeresboden bei Temperaturen von 30-120 Grad, die noch Leben erlauben, lagern mindestens 200 Billionen Tonnen Kohlenstoff. Hier, in der „ Tiefen Heißen Biosphäre“ („Deep Hot Biosphere“) gibt es noch mikrobielles Leben, über das wir sehr wenig wissen.

Prof. Antje Boetius erläutert: „Kalte Quellen der Tiefsee – besonders die an Schlammvulkanen - sind Fenster zu der unbekannten tiefen heißen Welt im Meeresboden und faszinierende, natürliche Laboratorien, die als Ökosystem besonders schützenswert sind. Um ihre Rolle für den Methanausstoß besser zu verstehen, sollten wir sie genau beobachten.“

Manfred Schlösser

Rückfragen an
Prof. Dr. Antje Boetius
Leiterin der Forschungsgruppe Mikrobielle Habitate und der HGF-MPG Brückengruppe für Tiefseeökologie und -Technologie
Telefon:0421 2028 860
E-Mail: aboetius@mpi-bremen.de
Dr. Frank Wenzhöfer
Telefon:0421 2028 862
E-Mail: fwenzhoe@mpi-bremen.de
Pressesprecher Dr. Manfred Schlösser
Tel: 0421 2028 704
E-Mail: mschloes@mpi-bremen.de
Beteiligte Institutionen:
Alfred-Wegener-Institut für Polar- und Meeresforschung, Bremerhaven
Max-Planck-Institut für Marine Mikrobiologie, Bremen
MARUM, Universität Bremen, Bremen
Originalarbeit:
Seafloor oxygen consumption fuelled by methane from cold seeps
Antje Boetius and Frank Wenzhöfer. Nature Geoscience, 29 August 2013. DOI: 10.1038/NGEO1926

Dr. Manfred Schloesser | Max-Planck-Institut
Weitere Informationen:
http://www.mpi-bremen.de

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen
18.08.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Klimawandel: Bäume binden im Alter große Mengen Kohlenstoff
17.08.2017 | Universität Hamburg

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie