Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

IFM-GEOMAR baut ein neuartiges Tiefsee-Observatorium

20.05.2010
„MoLab“ erlaubt monatelange Prozeßstudien in bis zu 6000 Metern Tiefe

Wissenschaftliche Untersuchungen am Meeresboden finden wegen des enormen technischen Aufwandes oft nur punktuell und zeitlich befristet von Forschungsschiffen aus statt.


Übersicht über das MoLab-System. Die Basiskonfiguration des MoLab Messfeldes besteht aus: Einem zentralen Master Lander Modul, drei Satelliten Landern, drei kleineren Modulen (zur Erfassung des freien Sauerstoffflusses)und zwei Verankerungsketten (500m Länge). Für die notwendige detaillierte Messfelderkundung, die Platzierung von kleinen Modulen sowie den Modulservice wird ein ROV eingesetzt. Alle Module sind über eine akustische Verbindung mit dem Masterlander als zentralem Knoten vernetzt.
Grafik: IFM-GEOMAR

Das Kieler Leibniz-Institut für Meereswissenschaften (IFM-GEOMAR) entwickelt aktuell ein neuartiges Beobachtungssystem für die Tiefsee, das über Monate hinweg auf mehreren Quadratkilometern Meeresboden verteilt synchron verschiedene biologische, physikalische, chemische und geologische Parameter messen kann. Das Bundesforschungsministerium fördert das Projekt mit 3,16 Millionen Euro.

Die Fläche der Meeresböden auf der Erde ist mehr als doppelt so groß wie die aller Kontinente zusammen. Wegen des hohen Drucks und der ewigen Dunkelheit in der Tiefsee ist dieser riesige Lebensraum für Menschen allerdings so unzugänglich wie der Weltraum. Nur mit High-Tech-Geräten wie Tiefseerobotern und autonom arbeitenden Tiefseelaboren konnten Wissenschaftler dem Meeresboden in den vergangenen Jahren einige Geheimnisse entlocken.

Doch diese Geräte können nur einen räumlich und zeitlich sehr begrenzten Eindruck von den Vorgängen in der Tiefe geben. Ein neues Tiefsee-Observatorium, das derzeit am Kieler Leibniz-Institut für Meereswissenschaften (IFM-GEOMAR) entwickelt und gebaut wird, soll das ändern. „Mit dem MoLab-System werden wir über Monate hinweg auf mehreren Quadratkilometern Fläche parallel physikalische, biologische, chemische und geologische Prozesse am Meeresboden und in der darüberliegenden Wasssersäule messen können“, erklärt Projekt-Koordinator Dr. Olaf Pfannkuche vom IFM-GEOMAR.

Das Kürzel „MoLab“ steht für „Modulares multidisziplinäres Meeresboden-Observatorium“. Das System wird aus einem Verbund von verschiedenen Geräten bestehen, die je nach wissenschaftlicher Fragestellung flexibel zusammengestellt werden und in Tiefen bis 6000 Metern abgesetzt werden können. Unter anderem kommen dabei LANDER zum Einsatz, autonome Tiefseelabore, die das IFM-GEOMAR seit Jahren erfolgreich in allen Weltmeeren einsetzt. Die Besonderheit des neuen Systems besteht darin, dass einer dieser LANDER als „Master Lander“ eingesetzt wird. Über akustische Signale steht er mit allen anderen Komponenten des Systems in Verbindung. So werden die Messungen aller beteiligten Sensoren räumlich und zeitlich abgeglichen und ergeben über das gesamte Messfeld einen einheitlichen Datensatz. Präzise Navigationseinrichtungen sowie Absetzvorrichtungen mit Videokameras sorgen dafür, dass auch die Position der einzelnen Module im Messgebiet exakt bestimmt werden kann. Zum Gesamtsystem wird zusätzlich ein mittelgroßer Tiefseeroboter (ROV) gehören, der für gezielte Probennahmen, Wartungsarbeiten oder den Umbau des Systems während der mehrmonatigen Messkampagnen eingesetzt werden wird.

„Die langfristige Beobachtung der Tiefsee ist derzeit das Ziel von Meeresforschern in aller Welt“, betont Dr. Pfannkuche. Vor der Westküste der USA wird beispielsweise für mehrere hundert Millionen Dollar ein stationäres Tiefseeobservatorium mit fester Kabelverbindung ans Land aufgebaut. Ähnliche Projekte in Europa befinden sich in der Planungsphase. „Solche örtlich gebundenen Systeme haben neben vielen Vorteilen aber auch den Nachteil, dass sie unflexibel und sehr teuer sind“, erklärt Dr. Pfannkuche weiter. Das MoLab kann dagegen von mittelgroßen Forschungsschiffen wie der Kieler POSEIDON aus eingesetzt, betreut und wieder eingeholt werden. „Außerdem kann es schnell an neue Einsatzgebiete oder wissenschaftliche Aufgaben angepasst werden“, erläutert Dr. Pfannkuche. „Damit schließt MoLab eine entscheidende Lücke zwischen den geplanten, sehr kostspieligen und räumlich gebundenen, verkabelten Observatorien einerseits und den bisher üblichen schiffsgestützten Momentaufnahmen andererseits.“

MoLab wird am Technik- und Logistikzentrum des IFM-GEOMAR entwickelt und gebaut, einzelne Komponenten werden zusammen mit deutschen Firmen – unter anderem aus Schleswig-Holstein – konstruiert oder zugeliefert. Das Bundesforschungsministerium unterstützt das Projekt mit 3,16 Millionen Euro. Erste Tests in der Ostsee könnten bereits 2011 erfolgen.

Andreas Villwock | idw
Weitere Informationen:
http://www.ifm-geomar.de

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Stagnation im tiefen Südpazifik erklärt natürliche CO2-Schwankungen
23.02.2018 | Carl von Ossietzky-Universität Oldenburg

nachricht Birgt Mikroplastik zusätzliche Gefahren durch Besiedlung mit schädlichen Bakterien?
21.02.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics