Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit hundert Millionen Laserstrahlen der Landschaftsgeschichte „auf den Grund gehen“

29.04.2013
Laserscanning und geophysikalische Messdaten erlauben 3D-Rekonstruktion von Karsthohlformen auf Kreta

Mit einer Kombination aus hochauflösenden Laserscanning-Daten der Erdoberfläche und geophysikalischen Messdaten des Untergrunds ist es Wissenschaftlern der Universität Heidelberg gelungen, sogenannte Karsthohlformen auf der griechischen Insel Kreta erstmals in ihrer Gesamtheit abzubilden und dabei einen dreidimensionalen Einblick in das unterirdische Relief dieser trichterförmigen Senken zu geben.


Digitales 3D-Modell von zwei Dolinen auf Kreta, die durch hochgenaues Laserscanning und Untergrundmessverfahren erfasst wurden. Vegetation wie zum Beispiel Olivenbäume und die Erdoberfläche wurden virtuell entfernt, so dass die Modelle einen Einblick in den Untergrund erlauben. Abbildung: Abteilung Geoinformatik

Die neue Methode der 3D-Darstellung wurde unter der Leitung von Juniorprofessor Dr. Bernhard Höfle am Geographischen Institut der Ruperto Carola entwickelt. Sie erlaubt umfassende Analysen an der Schnittstelle von Geo- und Altertumswissenschaften, denn die Verfüllungen dieser Hohlformen bilden terrestrische Archive, die sich besonders zur Rekonstruktion von Umweltszenarien der Vergangenheit eignen.

Karstgebiete und insbesondere Karsthohlformen, zu denen zum Beispiel Dolinen gehören, bilden seit Jahrtausenden wichtige Wirtschaftsräume des Menschen. So wurden derartige Hohlformen bereits nachweislich im zweiten vorchristlichen Jahrtausend für Ackerbau und Viehwirtschaft genutzt, so auch in den Gebirgsregionen auf der Mittelmeerinsel Kreta.

Aufgrund ihrer nach innen gewölbten Form fungieren Dolinen zugleich als „Materialfallen“, in denen sich Lockersedimente, archäologische Befunde oder auch vulkanische Aschen ansammeln können. „Diese Verfüllungen können wichtige Erkenntnisse zu den einstigen klimatischen Bedingungen, der ehemaligen Vegetationsstruktur, aber auch den menschlichen Einflüssen beispielsweise durch Landnutzung liefern“, erläutert Dr. Christoph Siart, der gemeinsam mit Prof. Höfle forscht.

Bislang wurden Karsthohlformen, so die Heidelberger Geographen, zumeist nur im Zusammenhang mit Sedimentbohrungen betrachtet. Diese erlauben einen punktuellen Einblick in den Untergrund und wurden in Kombination mit geomorphologischen Oberflächenbefunden zur Erklärung der Entstehung und Funktionsweise von Dolinen herangezogen. Mit Hilfe der neuen, in Heidelberg entwickelten Methode der 3D-Datenmodellierung ist es den Wissenschaftlern nun gelungen, die zweidimensionalen Daten des Untergrunds mit hochauflösenden 3D-Daten der Oberflächengestalt zu verknüpfen. Dazu wurde die Topographie der Oberfläche mit Hilfe des terrestrischen Laserscanning erfasst. Der Untergrund der sedimentverfüllten Dolinen konnte mit einer Kombination aus verschiedenen geophysikalischen Messverfahren zweidimensional in verschiedenen Querschnitten abgebildet werden.

Die Fusion dieser Daten erlaubt nunmehr fundierte Analysen auf dem Gebiet der Geomorphometrie. „Wir können beispielsweise das Volumen bestimmen oder die Hohlformen in einem virtuellen dreidimensionalen Modell digital vermessen. Damit haben wir die Basis geschaffen, um erstmals Aussagen zur Entstehung, zum Prozess der sedimentären Verfüllung und zur Altersabschätzung der Dolinen zu treffen“, erläutert Prof. Höfle. „Für die Rekonstruktion der Landschaftsgeschichte ist dies von außerordentlicher Bedeutung, denn erst die ganzheitliche Betrachtung der geomorphologischen Formen über eine Kombination von Oberflächen- und Untergrunddaten gestattet Einblicke in die lokalen Prozesse, die letztlich zum heutigen Landschaftsbild geführt haben.“

Die Datenaufnahme und Methodenentwicklung erfolgte im Rahmen der Projekte „Rekonstruktion des holozänen Umweltwandels auf Kreta“ sowie „Geoinformatik und 3D-Geoinformationstechnologie“, die in den Abteilungen für Physische Geographie und für Geoinformatik am Geographischen Institut der Universität Heidelberg durchgeführt wurden. Informationen im Internet sind unter der Adresse http://giscience.uni-hd.de zu finden.

Originalveröffentlichung:
C. Siart, M. Forbriger, E. Nowaczinski, S. Hecht. & B. Höfle: Fusion of multi-resolution surface (terrestrial laser scanning) and subsurface geodata (ERT, SRT) for karst landform investigation and geomorphometric quantification; Earth Surface Processes and Landforms (2013), doi: 10.1002/esp.3394

Kontakt:
Juniorprofessor Dr. Bernhard Höfle
Geographisches Institut und
Heidelberg Center for the Environment (HCE)
Telefon (06221) 54-5594
hoefle@uni-heidelberg.de

Kommunikation und Marketing
Pressestelle, Telefon (06221) 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Weitere Informationen:
http://www.uni-heidelberg.de
http://www.youtube.com/watch?v=_9jgPC6zGl8

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Stagnation im tiefen Südpazifik erklärt natürliche CO2-Schwankungen
23.02.2018 | Carl von Ossietzky-Universität Oldenburg

nachricht Birgt Mikroplastik zusätzliche Gefahren durch Besiedlung mit schädlichen Bakterien?
21.02.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics