Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Grundlagenforschung für die Praxis: Modelle der Geophysik auch für Materialwissenschaften nützlich

23.11.2017

Computersimulationen aus den Geowissenschaften klären Rätsel um Wirbelstrukturen in Multischichtmetallen auf

Grundlagenforschung kann manchmal ungewöhnliche Wege nehmen, um schließlich unerwartet zur Anwendung zu kommen. So ist es Forschern vom Institut für Geowissenschaften der Johannes Gutenberg-Universität Mainz (JGU) gelungen, geodynamische Computermodelle auf praktische Fragen der Materialwissenschaften anzuwenden und damit ein Problem der Metalldeformation zu lösen – ein komplett anderes Fachgebiet.


Rotierende Strukturen in A) Metalldeformationsexperimenten mit Aluminium (weiß) und Kupfer (rötlich), B) Computersimulationen und C) Gesteinen in West-Australien, hier eine sogenannte Deltaclast-Struktur. All diese Strukturen sind durch einen ähnlichen physikalischen Prozess entstanden.

Abb./©: A) Mohsen Pouryazdan/KIT, B) Boris Kaus/JGU, C) Cees Passchier/JGU

Die Gruppe um Prof. Dr. Boris Kaus zeigt in ihrer Arbeit, dass dieselbe Instabilität, die kilometerdicke Felslagen über lange Zeiträume zur Faltung bringt, auch auf Mikrometerebene, in diesem Fall bei Metallen, wirksam ist. Die Forschungsarbeit, die in Kooperation mit dem Karlsruher Institut für Technologie (KIT) erfolgte, wurde von Nature Communications publiziert.

Ausgangspunkt war eine Arbeit der Karlsruher Kollegen um Prof. Dr. Horst Hahn, die zum ersten Mal überhaupt mechanisches Mixen von Metallen in dreidimensionaler Form zeigen konnten. Mechanisches Mixen erfolgt, wenn zum Beispiel zwei Metalle aufeinanderdrücken und deformiert werden.

In der 3-D-Darstelllung zeigte sich, dass dieses Mixen komplizierter aussieht, als der Verlauf im Experiment hätte erwarten lassen. Insbesondere treten rotierende Strukturen auf, die Ähnlichkeiten mit Wolken oder Flüssigkeiten aufweisen und daher zunächst als Kelvin-Helmholtz-Instabilität gedeutet wurden.

Wirbelstrukturen in Metallen ähneln Gesteinsdeformationen

Tatsächlich aber findet sich eine weit größere Übereinstimmung der rotierenden Strukturen in den Metallen mit geophysikalischen Strukturen, die ein Wissenschaftler in einem Mikrotektonik-Buch des Mainzer Geowissenschaftlers Prof. Dr. Cees Passchier entdeckt hat. „Kelvin-Helmholtz-Instabilitäten konnten nicht die Lösung für das Problem sein, weil sich Luft und Wasser viel schneller bewegen als Metalle und deswegen die grundlegende Physik anders ist“, erklärt Kaus zu den Zusammenhängen.

Die Mainzer Forscher wiesen nach, dass die in Karlsruhe gefundenen Strukturen Ähnlichkeiten mit Gesteinsdeformationen im Gebirge zeigen und die grundlegende Physik praktisch identisch ist.

Erstautor Dr. Mohsen Pouryazdan vom KIT und seine Kooperationspartner stellen in Nature Communications eine Strategie vor, die zeigt, wie die morphologische Entwicklung bei sich verformenden Feststoffen, bestehend aus mehreren Phasen, auf Mikrometerskala verläuft. Dazu werden mit hohem Druck Torsionskräfte auf die Multischichtmetalle aus Silber und Kupfer sowie Aluminium und Kupfer ausgeübt.

Anschließend werden die Materialien mit Hilfe von Röntgen-Synchrotron-Tomographie in 3-D dargestellt. Hier sind in den sich verformenden Feststoffen verschiedene morphologischer Ereignisse zu sehen, darunter Faltformationen und Wirbel. Im nächsten Schritt schlagen die Wissenschaftler ein numerisches Modell vor. Die experimentellen Funde dienen praktisch als Referenz, um das Computermodell zu evaluieren.

Die Computersimulation zeigt, dass die anscheinend komplexen experimentellen Beobachtungen relativ einfach reproduziert werden können, indem nur wenige Materialparameter wie Viskosität und Stressexposition als Input verwendet werden. Demnach lässt sich die Scher-Instabilität in dem Metall-Experiment mit geologischen Systemen vergleichen, die sich auf großen Längenskalen und über Millionen von Jahren hinweg verändern.

Auch wenn das Experiment jetzt mit Multischichtmetallen unter Scherbelastung erfolgt ist, so ist das Modell nicht nur auf solche Fälle begrenzt, sondern kann auf irgendein Materialsystem angewendet werden, unabhängig von seiner Morphologie. Damit ist das Modell ein vielseitiges Werkzeug, um eine große Palette von Materialien und materialverarbeitenden Techniken zu untersuchen.

„Wir konnten zum ersten Mal zeigen, dass Modellierungstechniken aus der Grundlagenforschung in den Geowissenschaften ganz praktische Anwendungen für die Materialwissenschaften haben“, bemerkt Boris Kaus. „Dabei war unsere Software entwickelt worden, um Gebirgsbildungsprozesse zu simulieren – ein schönes Beispiel dafür, dass Grundlagenforschung immer unerwartete Anwendungen haben kann.“

Abb.:
http://www.uni-mainz.de/bilder_presse/09_geowissenschaften_metall_deformation.jp...
Rotierende Strukturen in A) Metalldeformationsexperimenten mit Aluminium (weiß) und Kupfer (rötlich), B) Computersimulationen und C) Gesteinen in West-Australien, hier eine sogenannte Deltaclast-Struktur. All diese Strukturen sind durch einen ähnlichen physikalischen Prozess entstanden.
Abb./©: A) Mohsen Pouryazdan/KIT, B) Boris Kaus/JGU, C) Cees Passchier/JGU

Veröffentlichung:
Mohsen Pouryazdan et al.
Mixing instabilities during shearing of metals
Nature Communications, 20. November 2017
DOI: 10.1038/s41467-017-01879-5
http://www.nature.com/articles/s41467-017-01879-5

Weitere Informationen:
Prof. Dr. Boris Kaus
Leiter AG Geophysik
Institut für Geowissenschaften
Johannes Gutenberg-Universität Mainz
55099 Mainz
Tel. +49 6131 39-24527
E-Mail: kaus@uni-mainz.de
http://www.geowiss.uni-mainz.de/934_DEU_HTML.php

Pressekontakt am KIT:
Kosta Schinarakis
Karlsruhe Institut für Technologie
Tel. +49 721 608 41956
Fax +49 721 608 43658
E-Mail: schinarakis@kit.edu
http://www.kit.edu/

Weitere Links:
http://www.geo-dynamics.eu/ (Geophysik und Geodynamik)
http://www.uni-mainz.de/presse/75361.php (Pressemitteilung vom 10.05.2016 „Geophysiker Boris Kaus erhält ERC Proof of Concept Grant“)

Petra Giegerich | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Open Science auf offener See
19.01.2018 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

nachricht Bisher älteste bekannte Sauerstoffoase entdeckt
18.01.2018 | Eberhard Karls Universität Tübingen

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit dem Betriebsrat von RWG Sozialplan - Zukunftsorientierter Dialog führt zur Einigkeit

19.01.2018 | Unternehmensmeldung

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie