Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gravitationswellendetektor bei Hannover testet holographisches Universum

06.02.2009
Hört GEO600 die Zeitquanten rauschen?

Leben wir in einem holographischen Universum? Sind Zeit und Raum körnig und kann man von einem Quantenrauschen der Raumzeit sprechen?

Der amerikanische Physiker Craig Hogan ist fest davon überzeugt, Beweise dafür in den Daten des deutsch-britischen Gravitationswellendetektors GEO600 gefunden zu haben - das ist seine Erklärung für ein rätselhaftes Rauschen in den Detektordaten, dessen Ursache bislang ungeklärt ist.

Der Gravitationswellendetektor wurde von 1995 bis Ende 2001 in Ruthe (Sarstedt) bei Hannover aufgebaut. Ob sich Craig Hogans Vermutungen bestätigen lassen, soll in den kommenden Monaten mit neuen Experimenten direkt am Detektor untersucht werden:

Um die Theorie des holographischen Rauschens zu testen, wird die Frequenz der höchsten Empfindlichkeit von GEO600, also der Ton, den der Detektor am besten hören kann, schrittweise hin zu immer höheren Tönen verschoben. Normalerweise ist die Frequenz so eingestellt, dass beste Chancen bestehen, explodierende Sterne oder verschmelzende schwarze Löcher beobachten zu können.

Stellt sich heraus, dass das rätselhafte Rauschen bei höheren Frequenzen dem bei niedrigeren Frequenzen entspricht, ist dies noch kein Beweis für Hogans Hypothese. Es würde aber weitergehende Untersuchungen besonders motivieren. Dann wird die Empfindlichkeit von GEO600 durch den Einbau von 'gequetschtem Vakuum' sowie eines Modenfilters in einer neuen Vakuumkammer verbessert. Die Technologie des 'gequetschten Vakuums' wurde in Hannover besonders verfeinert und würde im Rahmen der Untersuchungen weltweit erstmals zum Einsatz in einem Gravitationswellendetektor kommen.

"Wir sind wirklich gespannt, welche neuen Erkenntnisse wir im Laufe des Jahres über das mögliche holographische Rauschen erhalten werden", sagt Prof. Dr. Karsten Danzmann, Direktor des Hannoveraner Albert-Einstein-Instituts. "GEO600 bietet derzeit weltweit als einziges Experiment die Möglichkeit, die umstrittene Theorie zu überprüfen. Im Gegensatz zu den anderen großen Laserinterferometern reagiert GEO600 durch die eingesetzte Signal Recycling Methode bauartbedingt empfindlich auf Seitwärtsbewegungen des Strahlteilers. Das ist eigentlich unbequem, aber wir brauchen das Signal Recycling, um die kürzere Armlänge im Vergleich zu den anderen Detektoren zu kompensieren. Aber holographisches Rauschen erzeugt genau so ein Seitwärtssignal und so wird der Nachteil in diesem Fall zum Vorteil. Wir befinden uns sozusagen im Mittelpunkt eines Wirbelsturms in der Grundlagenforschung."

Auf der Suche nach der Körnigkeit der Zeit

Den kleinstmöglichen Bruchteil einer Entfernung bezeichnen Physiker als die 'Planck-Länge". Sie beträgt 1,6 o 10-35 m - das ist unvorstellbar klein und unmessbar. Auch die etablierten physikalischen Theorien gelten bei dieser Größenordnung nicht mehr. Nun überprüfen Wissenschaftler am Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut) und der Leibniz Universität Hannover eine Theorie des US-amerikanischen Physikers Craig Hogan, der davon überzeugt ist, in den Daten des Gravitationswellendetektor GEO600 die Zeitquanten rauschen zu hören.

Hogan geht davon aus,
- dass die Spiegel eines Interferometers sich in sehr schnellen Schritten in der Größenordnung der Planck-Länge relativ zu einander bewegen und

- dass sich diese Schritte während der Messung zu einer Größenordnung akkumulieren, die auch der Durchgang einer Gravitationswelle verursachen würde.

Hogan und die GEO600 Wissenschaftler gehen der Frage nach, ob ein bestimmtes "Störsignal" in den vom Detektor aufgenommenen Daten auf die 'Körnigkeit von Zeit und Raum' zurückzuführen ist.

Craig Hogan ist Direktor des Zentrums für Astroteilchenphysik am Fermi National Accelerator Laboratory sowie Professor für Astronomie & Astrophysik an der Universität von Chicago. Er war Mitglied des Wissenschaftlerteams, das 1998 die dunkle Energie mit entdeckte.

GEO600 genießt aufgrund seiner innovativen und zuverlässigen Technologien weltweit einen exzellenten Ruf und gilt als "Think Tank" für die internationale Gravitationswellenforschung. Hier wurden beispielsweise die modernsten Laser der Welt entwickelt, die heute in allen Gravitationswellenobservatorien weltweit eingesetzt werden. Mit der Technik des 'gequetschten Vakuums' gehen die GEO600-Wissenschaftler noch einen Schritt weiter. Diese Technologie ist für die dritte Generation der Gravitationswellendetektoren vorgesehen. GEO600 ist ein gemeinsames Projekt von Wissenschaftlern des Max-Planck-Instituts für Gravitationsphysik (Albert-Einstein-Institut, kurz AEI), der Leibniz Universität Hannover, der Cardiff University, der University of Glasgow und der University of Birmingham.

Das Zentrum für Gravitationsphysik, Albert-Einstein-Institut (AEI) Hannover
Am Zentrum für Gravitationsphysik betreiben Max-Planck-Gesellschaft und Leibniz Universität Hannover gemeinsam experimentelle Gravitationswellenforschung. Dazu gehört sowohl die Grundlagenforschung als auch die angewandte Forschung auf den Gebieten Laserphysik, Vakuumtechnik, Vibrationsisolation sowie die klassische Optik und Quantenoptik. Weitere Forschungsschwerpunkte sind die Entwicklung und Realisierung von Algorithmen zur Datenanalyse für verschiedene Typen von Quellen für Gravitationsstrahlung. Zusammen mit dem in Potsdam angesiedelten theoretischen Teil des Max-Planck-Instituts für Gravitationsphysik bildet das Albert-Einstein-Institut ein weltweit einzigartiges Zentrum für Gravitationsphysik, das alle ihre Aspekte abdeckt.

Gemeinsam mit britischen Forschungseinrichtungen betreibt das Zentrum für Gravitationsphysik in Ruthe bei Hannover den Gravitationswellendetektor GEO600. Die Wissenschaftler des Instituts sind außerdem federführend an LISA (Laser Inter-ferometer Space Antenna), dem geplanten Gravitationswellendetektor im Weltraum beteiligt. Das Gemeinschaftsprojekt von NASA und ESA soll ab 2018 Gravitations-wellen im Weltraum messen und damit erstmals so tief ins Universum hinein "hören" können wie niemals zuvor.

Der Exzellenzcluster QUEST, Hannover
Das AEI Hannover ist am Exzellencluster QUEST beteiligt, der in der Exzellenzinitiative des Bundes und der Länder gefördert wird. QUEST (Centre for Quantum Engineering and Space-Time Research) wird schwerpunktmäßig die Forschung zum Quantenengineering sowie zur Raumzeit vorantreiben, die zugrunde liegende Physik erforschen und innovative Methoden für neue Anwendungen erschließen. Die Aktivitäten von QUEST werden vier Kernbereiche aktueller Forschung deutlich voranbringen: Quantenengineering, Quantensensoren, Physik der Raumzeit und Zukunftstechnologien.
Weitere Informationen im Internet:
- Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut): http://www.aei.mpg.de
- GEO600: http://www.geo600.de
- QUEST: http://www.questhannover.de
- Holographisches Universum: C. Hogan, Indeterminacy of holographic quantum geometry, Phys. Rev. D 78, 087501 (2008).

http://www.newscientist.com/article/mg20126911.300-our-world-may-be-a-giant-hologram.html?full=true

Dr. Stefanie Beier | idw
Weitere Informationen:
http://www.aei.mpg.de
http://www.geo600.de
http://www.questhannover.de

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Flechten aus dem Bernsteinwald
25.04.2017 | Georg-August-Universität Göttingen

nachricht Riesenfaultier war Vegetarier - Ernährung des fossilen Megatheriums entschlüsselt
18.04.2017 | Senckenberg Forschungsinstitut und Naturmuseen

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Berührungslose Schichtdickenmessung in der Qualitätskontrolle

25.04.2017 | Veranstaltungen

Forschungsexpedition „Meere und Ozeane“ mit dem Ausstellungsschiff MS Wissenschaft

24.04.2017 | Veranstaltungen

3. Bionik-Kongress Baden-Württemberg

24.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Neuer Blue e+ Chiller von Rittal - Exakt regeln und effizient kühlen

25.04.2017 | HANNOVER MESSE

RWI/ISL-Containerumschlag-Index: Kräftiger Anstieg setzt sich fort

25.04.2017 | Wirtschaft Finanzen

Pharmacoscopy: Mikroskopie der nächsten Generation

25.04.2017 | Medizintechnik