Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

GPS hilft auch bei der Analyse der globalen Wasserressourcen

18.03.2014

Das hydrologische Modell WaterGAP, das die Wasserressourcen auf der Erde simuliert, hat die Wasserspeicherung bisher unterschätzt. Das hat die Frankfurter Hydrologin Prof. Petra Döll mithilfe von GPS-Beobachtungen und Satelliten-Daten festgestellt, die das Schwerefeld der Erde messen.

WaterGAP ist ein hydrologisches Modell, das Wasserknappheit, Grundwasserzehrung, Hochwasser und Dürren unter dem Einfluss des Klimawandels auf allen Landflächen der Erde modelliert.

Wie gut dieses Modell ist, überprüfte die Frankfurter Hydrologin Prof. Petra Döll erstmals mithilfe von GPS-Beobachtungen und Daten der GRACE-Satelliten, die das Schwerefeld der Erde messen. Die in der aktuellen Ausgabe der Fachzeitschrift Survey in Geophysics publizierte Studie zeigt: WaterGAP muss modifiziert werden.

„In den meisten Gebieten der Erde unterschätzt WaterGAP die saisonalen Schwankungen der kontinentalen Wasserspeicherung und hält das Niederschlagswasser nicht genügend lange auf den Kontinenten zurück“, fasst Petra Döll vom Institut für Physische Geographie der Goethe-Universität das Ergebnis zusammen. „Es wird also mehr Wasser gespeichert als das Modell in der Simulation vorhersagt.“

WaterGAP berechnet für jeden Tag und mit einer räumlichen Auflösung von circa 50 Kilometern verschiedenste Wasserflüsse wie Verdunstung, Grundwasserneubildung und den Durchfluss in Flüssen, ebenso wie die Wassermenge, die im Boden, im Grundwasser, in Oberflächengewässern und als Schnee gespeichert ist.

Dabei werden auch Wasserentnahmen für Trinkwasserversorgung, Industrie und Landwirtschaft berücksichtigt. In die Modellberechnungen gehen eine Vielzahl von Daten ein: Klimadaten, Vegetations- und Bodendaten, sozioökonomische Daten und viele mehr.

Aufgrund der ungenauen Eingangsdaten und der Vereinfachungen, die bei einer Modellierung auf globaler Skala notwendig sind, sind die Ergebnisse unsicher. Um das Modell zu justieren und seine Güte zu überprüfen, wurden bisher die Durchflussdaten von Flüssen verwendet, aber leider existieren solche Daten nicht für alle wichtigen Flüsse. Außerdem muss ein Modell auch die Dynamik der gespeicherten Wassermengen gut abbilden können, um beispielsweise Wasserentnahmen durch den Menschen detektieren zu können.

Deshalb entschloss sich Petra Döll, den Einfluss der Wassermassen auf die Deformation der Erdkruste und das Schwerefeld der Erde zur Überprüfung des Modells zu verwenden. Zeitliche schwankende Wassermassen deformieren die Erdkruste, was dazu führt, dass die Lage von fest installierten GPS-Antennen im Millimeter-Bereich variiert. Gleichzeitig führen schwankende Wassermassen auch zu starken Variationen des Schwerefelds der Erde. Diese werden mithilfe der GRACE-Satelliten abgeschätzt.

Gemeinsam mit dem Dresdner Geodäten Dr. Mathias Fritsche, der auf die Auswertung von GPS-Beobachtungen spezialisiert ist, und mit der Bonner Geodätin Dr. Annette Eicker, die sich mit der Berechnung des Schwerefelds befasst, überprüfte Prof. Petra Döll die von WaterGAP berechnete Dynamik der kontinentalen Wasserspeicherung und konnte so die Schwachstellen des Modells identifizieren.

In der Studie wurden die gemessenen Lageänderungen von circa 200 weltweit verteilten GPS-Antennen mit den Lageänderungen verglichen, die laut Berechnungen von WaterGAP aufgrund Variationen der Wassermassen auftreten sollten. Außerdem setzten die Forscher die saisonalen Schwankungen des kontinentalen Anteils der GRACE-Schwerefelder zu den WaterGAP-Ergebnissen ins Verhältnis. Das Ergebnis: WaterGAP unterschätzt die saisonalen Schwankungen der kontinentalen Wasserspeicherung und wird deshalb in Zukunft modifiziert werden. 

Ein weiteres Ergebnis der Studie ist, dass die saisonalen Schwankungen des Schwerefelds der Erde nicht verwendet werden können, um Wasserentnahmen durch den Menschen zu entdecken. Dazu gibt es zu wenige feste GPS-Antennen, und die Genauigkeit und räumliche Auflösung des GRACE-Schwerefelds ist zu gering.

„Nur wenn Wasserentnahmen zu einer Grundwasserzehrung führen, das heißt, die entnommenen Wassermengen größer sind als der Zufluss von Wasser, können die GRACE-Satellitenmessungen die Abschätzung von Wasserentnahmen unterstützen“, erläutert Prof. Döll. Diese Möglichkeit wurde in einer noch nicht veröffentlichten Folgestudie genutzt.

Die Arbeiten wurden durch die Deutsche Forschungsgemeinschaft im Schwerpunktprogramm "Massentransporte und Massenverteilungen im System Erde" gefördert.

Publikation:
Döll, P., Fritsche, M., Eicker, A., Müller Schmied, H. (2014): Seasonal water storage variations as impacted by water abstractions: Comparing the output of a global hydrological model with GRACE and GPS observations. Surv Geophys. DOI 10.1007/s10712-014-9282-2
Online-Publikation: http://link.springer.com/article/10.1007/s10712-014-9282-2

Ein Bild zum Download finden Sie unter: http://www.muk.uni-frankfurt.de/49933957/064
Bildtext: Die Karte zeigt, wo das Simulationsprogramm WaterGAP verbessert werden muss. Rote Punkte markieren feste GPS-Antennen, die anzeigen, wo Watergap die saisonale Wasserspeicherung unterschätzt. Rote Flächen zeigen an, wo das Programm die Wassermenge unterschätzt, wenn man sie mit dem vom GRACE-Satelliten gemessenen Schwerefeld der Erde vergleicht. In den abgedeckten Flächen ist das GRACE-Signal nicht aussagekräftig.

Informationen: Prof. Petra Döll, Institut für Physische Geographie, Campus Riedberg, Tel.: (069)-798-40219, p.doell@em.uni-frankfurt.de

Die Goethe-Universität ist eine forschungsstarke Hochschule in der europäischen Finanzmetropole Frankfurt. 2014 feiert sie ihren 100. Geburtstag. 1914 gegründet mit rein privaten Mitteln von freiheitlich orientierten Frankfurter Bürgerinnen und Bürgern fühlt sie sich als Bürgeruniversität bis heute dem Motto „Wissenschaft für die Gesellschaft“ in Forschung und Lehre verpflichtet. Viele der Frauen und Männer der ersten Stunde waren jüdische Stifter. In den letzten 100 Jahren hat die Goethe-Universität Pionierleistungen erbracht auf den Feldern der Sozial-, Gesellschafts- und Wirtschaftswissenschaften, Chemie, Quantenphysik, Hirnforschung und Arbeitsrecht. Am 1. Januar 2008 gewann sie mit der Rückkehr zu ihren historischen Wurzeln als Stiftungsuniversität ein einzigartiges Maß an Eigenständigkeit. Heute ist sie eine der zehn drittmittelstärksten und drei größten Universitäten Deutschlands mit drei Exzellenzclustern in Medizin, Lebenswissenschaften sowie Geisteswissenschaften.“

Mehr Informationen unter www2.uni-frankfurt.de/gu100

Herausgeber: Der Präsident
Abteilung Marketing und Kommunikation, Postfach 11 19 32,
60054 Frankfurt am Main
Redaktion: Dr. Anne Hardy, Referentin für Wissenschaftskommunikation Telefon (069) 798 – 2 92 28, Telefax (069) 798 – 763 12531, E-Mail hardy@pvw.uni-frankfurt.de
Internet: www.uni-frankfurt.de

Dr. Anne Hardy | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Der Salzwasser-Wächter auf der Darßer Schwelle
19.09.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

OLED auf hauchdünnem Edelstahl

21.09.2017 | Messenachrichten

Weniger (Flug-)Lärm dank Mathematik

21.09.2017 | Physik Astronomie

In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät

21.09.2017 | Geowissenschaften