Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Geowissenschaftler untersuchen den Kreislauf von Wasser

23.11.2010
Geowissenschaftler untersuchen den Kreislauf von Wasser und Kohlendioxid im Boden-Pflanzen-Atmosphären-System / Transregio-Sonderforschungsbereich 32 wird verlängert

Der Transregio (TR) / Sonderforschungsbereich 32 wird verlängert. Die Deutsche Forschungsgemeinschaft (DFG) wird den TR mit dem Titel ,„Muster und Strukturen in Boden-Pflanzen-Atmosphären-Systemen: Erfassung, Modellierung und Datenassimilation“ in den nächsten vier Jahren mit rund 10 Millionen Euro fördern.

Der TR 32 läuft bereits erfolgreich seit 2007. Ziel des TR 32 ist es, die komplexen Austauschprozesse zwischen Boden, Pflanzen und Atmosphäre zu erforschen. Dabei stehen der Austausch von Wasser und Kohlendioxid im Mittelpunkt der Untersuchungen. Da die Austauschprozesse sowohl zeitlich als auch räumlich sehr variabel sind, stellt die Vorhersage des Systemverhaltens eine große Herausforderung dar.

Die Ergebnisse der Grundlagenforschung sollen einen Beitrag dazu leisten, den globalen Klimawandel besser zu verstehen und konkret die Wetterprognosen zu verbessern. Beteiligt an dem interdisziplinärem Projekt sind Wissenschaftler aus Agrar-, Geo- und Materialwissenschaften. An dem TR sind die Universitäten Aachen, Bonn und Köln sowie das Forschungszentrum Jülich (FZJ) beteiligt. Sprecher des Projekts ist Professor Clemens Simmer (Bonn), Sprecherin der Kölner Wissenschaftler ist Professorin Susanne Crewell.

Die Wissenschaftler verfolgen im TR einen neuen Ansatz, um besser zu verstehen, wie die komplexen Austauschprozesse zwischen Boden-Vegetation und Atmosphäre funktionieren. „Die neue Hypothese des Transregio ist, dass wir nicht die volle Komplexität der gekoppelten Prozesse im System Boden-Vegetation-Atmosphäre beschreiben müssen, sondern nur bestimmte Muster in Raum und Zeit“, erklärt Susanne Crewell. Zur Identifikation diese Muster führen die Wissenschaftler umfangreiche Messungen und hochaufgelöste Modellierungen durch. Im Fokus ist dabei der Austausch von Wasser und Kohlendioxid zwischen den Teilsystemen Boden, Vegetation und der Atmosphäre.

„Gerade die Flüsse von Wasser und Kohlendioxid sind in unserem Klimasystem eine der hochvariabelsten und wichtigsten Größen“, so Crewell. Denn durch sie werden nicht nur materielle Stoffe zwischen den Teilen des Systems ausgetauscht, sondern auch Energie, das heißt Wärme. „Etwa fünfzig Prozent der von der Sonne empfangenen Energie wird vom Erdboden absobiert, erklärt Susanne Crewell. „Dies wird zum großen Teil über Verdunstung von Wasser zurück in die Atmosphäre geführt.“ Allerdings auf sehr unterschiedliche und zum Teil sehr kleinteilige Weise: „Wer schon mal von einer Wiese auf den danebenliegenden Asphalt getreten ist, kennt die Unterschiede in Temperatur und Feuchtigkeit auf kleinstem Raum.“

Aufgrund der hohen Variabilität im Raum und Zeit untersuchen die Forscher Prozessabläufe vom Bodenpartikel bis hin zu ganzen Feldlandschaften.. So wird das Verhalten der sehr kleinen Teile des Systems erforscht und die Ergebnisse mit den Messungen größerer räumliche Abteilungen verglichen. „Wir untersuchen im Labor die Bodenpartikel auf ihr Verhalten. Danach messen wir auf dem Feld kleine und größere Bodenstücke.“ . Um die Schnittstellen im System des Bodens, der Vegetation, der Atmosphäre zu verstehen, sind eine große Zahl an Disziplinen am Projekt beteiligt. Geophysiker, Bodenkundler, Hydrologen, Meteorologen, Geographen, Agrarwissenschaftler, Pflanzenphysiologen und Informatiker arbeiten Hand in Hand. Die enge Zusammenarbeit führt zu willkommenen Nebeneffekten. So konnten die Meteorologen der Universität zu Köln in einer engen Kooperation mit dem Forschungszentrum Jülich ein weltweit einzigartiges Observatorium mit Messgeräten beider Institutionen aufbauen.

Die DFG honoriert mit der Verlängerung des TR 32 die umfangreiche praktische und theoretische Arbeit der Wissenschaftler. Denn neben den vielfältigen Messungen in allen räumlichen und zeitlichen Skalen, haben die Forscher Methoden entwickelt, die ermittelten Daten in einem Modell des Boden-Vegetation-Atmosphären-Systems zu integrieren: „Wir haben im Labor Methoden entwickelt, die wir jetzt ins Feld bringen wollen. Wir haben Modelle entwickelt, die jetzt angewandt werden können, und wir haben die Instrumentierung verbessert.“

Das umfangreiche Programm der Forscher soll dazu dienen, Lücken im Wissen über den Kreislauf von Wasser und Kohlendioxid zu füllen. „Wir betreiben hier Grundlagenforschung“, erklärt die Sprecherin der Kölner Wissenschaftler. Trotzdem erhoffen sich die Forscher über das verbesserte Prozessverständnis konkrete Verbesserungen zum Beispiel in den operationellen Wettervorhersagemodellen, hydrologischen Modellen und der Klimaforschung. „Insbesondere das Kohlendioxid ist da wichtig“, so Crewell. Das Treibhausgas, das anthropogen durch Verbrennung von fossilen Brennstoffen in Industrie, Energiegewinnung und Verkehr entsteht, tritt lokal in hohen Konzentrationen auf, wie die Wissenschaftler feststellen konnten. „Gerade in den Morgenstunden haben wir hier im Rheinland sehr verschmutzte Luft am Boden“, weiß Crewell. „Das müssen wir auch in unseren Modellen berücksichtigen, wenn wir die Aufnahme von Kohlendioxid durch Pflanzen analysieren.“

Bei Rückfragen: Professor Susanne Crewell, 0221 – 470 5286,
crewell@meteo.uni-koeln.de
Verantwortlich: Dr. Patrick Honecker

Gabriele Rutzen | idw
Weitere Informationen:
http://www.uni-koeln.de
http://tr32.uni-koeln.de/index.php

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Nährstoffhaushalt einer neuentdeckten “Todeszone” im Indischen Ozean auf der Kippe
06.12.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Wichtiger Prozess für Wolkenbildung aus Gasen entschlüsselt
05.12.2016 | Leibniz-Institut für Troposphärenforschung e. V.

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie