Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Geodätisches Referenzsystem ermöglicht hochpräzise Positionsbestimmung

25.08.2016

Um wie viele Millimeter steigt der Meeresspiegel? Wie schnell bewegen sich Kontinente? Wie stark beeinflussen Hoch- und Tiefdruckgebiete die Höhe der Landmassen? Um diese Fragen beantworten zu können, werden an mehr als 1700 Messpunkten weltweit rund um die Uhr Daten gesammelt. Forscher der Technischen Universität München (TUM) werten diese aus. Ihre neue Realisierung des globalen Referenzsystems, die jetzt veröffentlicht wurde, ist so genau, dass man sogar jahreszeitliche Variationen damit aufspüren kann.

Immer wissen, wo man ist - dank Smartphone heute kein Problem mehr. Die eingebaute GPS-Funktion errechnet sogar in abgelegenen Bergtälern den exakten Standort. Die Informationen dafür liefern Satelliten, die per Mikrowellenstrahlung ihre Position zur Erde funken. Doch woher wissen eigentlich die Satelliten, wo sie sind?


Vier verschiedene Messsysteme (dargestellt in unterschiedliche Farben) zeigen an, wohin und wie schnell die Kontinente wandern.

Illustration: DGFI-TUM

"Die ganz alltägliche Standortbestimmung wäre nicht möglich ohne ein hochkomplexes Referenzsystem, das immer wieder aktualisiert werden muss", antwortet Prof. Florian Seitz, Direktor des Deutschen Geodätischen Forschungsinstituts der TUM. Sein Team hat soeben den DTRF2014 veröffentlicht – die brandneue Realisierung des Internationalen Terrestrischen Referenzsystems.

Die Aktualisierung ist nötig, weil die Erde im Wandel ist. Mit 6,9 Zentimetern pro Jahr rückt beispielsweise Australien nach Nordosten und um 7,1 Zentimeter pro Jahr schiebt sich Hawaii nach Nordwesten. Europa und Amerika driften auseinander, die skandinavischen Länder, auf denen einst Eispanzer gelegen haben, heben sich.

... mehr zu:
»GNSS »Geodäten »Laser »Messpunkte »Satelliten »TUM

"Um diese Bewegungen exakt messen zu können, braucht man ein stets hochgenaues Bezugssystem über viele Jahrzehnte hinweg. Dabei müssen viele dynamische Prozesse berücksichtigt werden, beispielweise die ungleichmäßige Rotationsgeschwindigkeit der Erde", erläutert Seitz.

Mit Mikrowellen und Laser

Doch wie schafft man ein allgemeingültiges Bezugsystem, wenn nichts bleibt, wie es ist? Die Geodäten haben hierfür ein Netz aus weltweit 1712 Messstationen aufgebaut. Eine der am besten ausgestatteten ist das Geodätische Observatorium Wettzell, das von der TUM mitbetrieben wird. Auf dem Gelände stehen drei Radioteleskope für Very Long Baseline Interferometry (VLBI), die Radiowellen empfangen, welche von Quasaren ausgesandt werden. Die Messungen erlauben Rückschlüsse auf Veränderungen der Position unseres Planeten im All. Außerdem ermitteln zwei Satellite Laser Ranging (SLR)-Systeme mit Hilfe starker Laserstrahlen den Abstand zu Satelliten, die das Laserlicht reflektieren.

Auf diese Weise lassen sich feinste Verschiebungen der Bodenstation dokumentierten. Ergänzt werden diese Messungen durch mehrere Bodenstationen des Global Navigation Satellite System (GNSS), die Daten von GPS, Galileo und GLONASS empfangen. Die drei Beobachtungsverfahren VLBI, SLR und GNSS bilden die Grundlage der Berechnungen des DTRF2014. Dazu kommt noch das Doppler-System DORIS, die Abkürzung steht für Doppler Orbitography and Radiopositioning Integrated by Satellite.

Variationen im Jahrestakt

"Durch die Kombination der verschiedenen Messungen können wir genau berechnen, mit welcher Geschwindigkeit sich der Standort Wettzell bewegt", erklärt TUM-Forscher Dr. Mathis Bloßfeld. Mit 25,4 Millimeter pro Jahr wandert Wettzell nach Nordost. Zusammen mit seinen Kollegen hat der Ingenieur auch die Bewegung der übrigen global verteilten Messpunkte ermittelt. Komplexe, eigens für diesen Zweck entwickelte Algorithmen helfen dabei. "Der Prozess lässt sich aber nicht vollständig automatisieren", erläutert Seitz: "Sprunghafte Positionsveränderungen, die beispielsweise durch die Erdbeben in Chile 2010 oder Japan 2011 ausgelöst wurden, müssen bereinigt werden, um keine falschen Rückschlüsse auf künftige Bewegungen zu ziehen."

Durch sorgfältige Analyse konnten die TUM-Forscher jetzt erstmals sogar feinste, jahreszeitliche Variationen im Millimeterbereich in den Koordinaten abbilden. Diese Variationen entstehen, wenn lang anhaltende Hochdruckgebiete die Landmassen zusammendrücken oder Tiefdruckgebiete diese entlasten.

Die Zukunft der Kontinente

Die neue Realisierung des Internationalen Terrestrischen Referenzsystems DTRF2014, die die Geodäten an der TUM im Auftrag des Internationalen Erdrotations- und Referenzsystemdienstes erstellt haben, wird in der Fachwelt schon ungeduldig erwartet. Der Datensatz, der jetzt bei PANGAEA veröffentlicht wurde, zeigt, mit welcher Geschwindigkeit und Richtung sich die Messpunkte in den vergangenen Jahren bewegt haben. Auf dieser Grundlage lässt sich berechnen, wo die Punkte in einigen Monaten oder Jahren liegen werden.

Interessant sind die Ergebnisse für Geowissenschaftler, die mit Hilfe der Daten die Bewegung der Erdkruste exakt nachvollziehen und Rückschlüsse ziehen können auf die Dynamik in Erdinneren. Und die Geodäten benötigen das hochgenaue globale Koordinatensystem für die Bestimmung des globalen Meeresspiegelanstiegs – auf Millimeter genau.

"Vor allem aber schafft das System eine neue Grundlage für die Positionierung von Satelliten und verbessert somit die Genauigkeit aller satellitengestützen Navigationssysteme", resümiert Seitz.

Referenz für den Datensatz: Seitz, Manuela; Bloßfeld, Mathis; Angermann, Detlef; Schmid, Ralf; Gerstl, Michael; Seitz, Florian (2016): The new DGFI-TUM realization of the ITRS: DTRF2014 (data). Deutsches Geodätisches Forschungsinstitut, Munich, Doi:10.1594/PANGAEA.864046.
https://doi.pangaea.de/10.1594/PANGAEA.864046

Bild zum Download: https://mediatum.ub.tum.de/1324558?show_id=1324557

Kontakt

Technische Universität München
Deutsches Geodätisches Forschungsinstitut und Lehrstuhl für Geodätische Geodynamik
Prof. Florian Seitz
089 / 23031-1106
E-Mail: florian.seitz@tum.de

Weitere Informationen:

https://www.tum.de/die-tum/aktuelles/pressemitteilungen/kurz/article/33339/

Dr. Ulrich Marsch | Technische Universität München

Weitere Berichte zu: GNSS Geodäten Laser Messpunkte Satelliten TUM

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Wasser - der heimliche Treiber des Kohlenstoffkreislaufs?
17.01.2017 | Max-Planck-Institut für Biogeochemie

nachricht Was ist krebserregend am Erionit?
13.01.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungsnachrichten

Intelligente Haustechnik hört auf „LISTEN“

17.01.2017 | Architektur Bauwesen

Satellitengestützte Lasermesstechnik gegen den Klimawandel

17.01.2017 | Maschinenbau