Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Geodätisches Referenzsystem ermöglicht hochpräzise Positionsbestimmung

25.08.2016

Um wie viele Millimeter steigt der Meeresspiegel? Wie schnell bewegen sich Kontinente? Wie stark beeinflussen Hoch- und Tiefdruckgebiete die Höhe der Landmassen? Um diese Fragen beantworten zu können, werden an mehr als 1700 Messpunkten weltweit rund um die Uhr Daten gesammelt. Forscher der Technischen Universität München (TUM) werten diese aus. Ihre neue Realisierung des globalen Referenzsystems, die jetzt veröffentlicht wurde, ist so genau, dass man sogar jahreszeitliche Variationen damit aufspüren kann.

Immer wissen, wo man ist - dank Smartphone heute kein Problem mehr. Die eingebaute GPS-Funktion errechnet sogar in abgelegenen Bergtälern den exakten Standort. Die Informationen dafür liefern Satelliten, die per Mikrowellenstrahlung ihre Position zur Erde funken. Doch woher wissen eigentlich die Satelliten, wo sie sind?


Vier verschiedene Messsysteme (dargestellt in unterschiedliche Farben) zeigen an, wohin und wie schnell die Kontinente wandern.

Illustration: DGFI-TUM

"Die ganz alltägliche Standortbestimmung wäre nicht möglich ohne ein hochkomplexes Referenzsystem, das immer wieder aktualisiert werden muss", antwortet Prof. Florian Seitz, Direktor des Deutschen Geodätischen Forschungsinstituts der TUM. Sein Team hat soeben den DTRF2014 veröffentlicht – die brandneue Realisierung des Internationalen Terrestrischen Referenzsystems.

Die Aktualisierung ist nötig, weil die Erde im Wandel ist. Mit 6,9 Zentimetern pro Jahr rückt beispielsweise Australien nach Nordosten und um 7,1 Zentimeter pro Jahr schiebt sich Hawaii nach Nordwesten. Europa und Amerika driften auseinander, die skandinavischen Länder, auf denen einst Eispanzer gelegen haben, heben sich.

... mehr zu:
»GNSS »Geodäten »Laser »Messpunkte »Satelliten »TUM

"Um diese Bewegungen exakt messen zu können, braucht man ein stets hochgenaues Bezugssystem über viele Jahrzehnte hinweg. Dabei müssen viele dynamische Prozesse berücksichtigt werden, beispielweise die ungleichmäßige Rotationsgeschwindigkeit der Erde", erläutert Seitz.

Mit Mikrowellen und Laser

Doch wie schafft man ein allgemeingültiges Bezugsystem, wenn nichts bleibt, wie es ist? Die Geodäten haben hierfür ein Netz aus weltweit 1712 Messstationen aufgebaut. Eine der am besten ausgestatteten ist das Geodätische Observatorium Wettzell, das von der TUM mitbetrieben wird. Auf dem Gelände stehen drei Radioteleskope für Very Long Baseline Interferometry (VLBI), die Radiowellen empfangen, welche von Quasaren ausgesandt werden. Die Messungen erlauben Rückschlüsse auf Veränderungen der Position unseres Planeten im All. Außerdem ermitteln zwei Satellite Laser Ranging (SLR)-Systeme mit Hilfe starker Laserstrahlen den Abstand zu Satelliten, die das Laserlicht reflektieren.

Auf diese Weise lassen sich feinste Verschiebungen der Bodenstation dokumentierten. Ergänzt werden diese Messungen durch mehrere Bodenstationen des Global Navigation Satellite System (GNSS), die Daten von GPS, Galileo und GLONASS empfangen. Die drei Beobachtungsverfahren VLBI, SLR und GNSS bilden die Grundlage der Berechnungen des DTRF2014. Dazu kommt noch das Doppler-System DORIS, die Abkürzung steht für Doppler Orbitography and Radiopositioning Integrated by Satellite.

Variationen im Jahrestakt

"Durch die Kombination der verschiedenen Messungen können wir genau berechnen, mit welcher Geschwindigkeit sich der Standort Wettzell bewegt", erklärt TUM-Forscher Dr. Mathis Bloßfeld. Mit 25,4 Millimeter pro Jahr wandert Wettzell nach Nordost. Zusammen mit seinen Kollegen hat der Ingenieur auch die Bewegung der übrigen global verteilten Messpunkte ermittelt. Komplexe, eigens für diesen Zweck entwickelte Algorithmen helfen dabei. "Der Prozess lässt sich aber nicht vollständig automatisieren", erläutert Seitz: "Sprunghafte Positionsveränderungen, die beispielsweise durch die Erdbeben in Chile 2010 oder Japan 2011 ausgelöst wurden, müssen bereinigt werden, um keine falschen Rückschlüsse auf künftige Bewegungen zu ziehen."

Durch sorgfältige Analyse konnten die TUM-Forscher jetzt erstmals sogar feinste, jahreszeitliche Variationen im Millimeterbereich in den Koordinaten abbilden. Diese Variationen entstehen, wenn lang anhaltende Hochdruckgebiete die Landmassen zusammendrücken oder Tiefdruckgebiete diese entlasten.

Die Zukunft der Kontinente

Die neue Realisierung des Internationalen Terrestrischen Referenzsystems DTRF2014, die die Geodäten an der TUM im Auftrag des Internationalen Erdrotations- und Referenzsystemdienstes erstellt haben, wird in der Fachwelt schon ungeduldig erwartet. Der Datensatz, der jetzt bei PANGAEA veröffentlicht wurde, zeigt, mit welcher Geschwindigkeit und Richtung sich die Messpunkte in den vergangenen Jahren bewegt haben. Auf dieser Grundlage lässt sich berechnen, wo die Punkte in einigen Monaten oder Jahren liegen werden.

Interessant sind die Ergebnisse für Geowissenschaftler, die mit Hilfe der Daten die Bewegung der Erdkruste exakt nachvollziehen und Rückschlüsse ziehen können auf die Dynamik in Erdinneren. Und die Geodäten benötigen das hochgenaue globale Koordinatensystem für die Bestimmung des globalen Meeresspiegelanstiegs – auf Millimeter genau.

"Vor allem aber schafft das System eine neue Grundlage für die Positionierung von Satelliten und verbessert somit die Genauigkeit aller satellitengestützen Navigationssysteme", resümiert Seitz.

Referenz für den Datensatz: Seitz, Manuela; Bloßfeld, Mathis; Angermann, Detlef; Schmid, Ralf; Gerstl, Michael; Seitz, Florian (2016): The new DGFI-TUM realization of the ITRS: DTRF2014 (data). Deutsches Geodätisches Forschungsinstitut, Munich, Doi:10.1594/PANGAEA.864046.
https://doi.pangaea.de/10.1594/PANGAEA.864046

Bild zum Download: https://mediatum.ub.tum.de/1324558?show_id=1324557

Kontakt

Technische Universität München
Deutsches Geodätisches Forschungsinstitut und Lehrstuhl für Geodätische Geodynamik
Prof. Florian Seitz
089 / 23031-1106
E-Mail: florian.seitz@tum.de

Weitere Informationen:

https://www.tum.de/die-tum/aktuelles/pressemitteilungen/kurz/article/33339/

Dr. Ulrich Marsch | Technische Universität München

Weitere Berichte zu: GNSS Geodäten Laser Messpunkte Satelliten TUM

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen
18.08.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Klimawandel: Bäume binden im Alter große Mengen Kohlenstoff
17.08.2017 | Universität Hamburg

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie