Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Fossile Vorläufer der ersten Tiere

23.12.2011
Einzellige Organismen, die vor über einer halben Milliarde Jahre gelebt haben und deren Fossilien in China gefunden wurden, sind wohl die unmittelbaren Vorläufer der frühesten Tiere.

Die amöbenartigen Einzeller haben sich in einer Weise in zwei, vier, acht usw. Zellen geteilt, wie es heute tierische (und menschliche) Embryonen tun. Die Forscher glauben, dass diese Organismen einem der ersten Schritte vom Einzeller zum Vielzeller in der Entwicklung richtiger Tiere entsprechen. Möglich wurden die Erkenntnisse durch tomografische Untersuchungen, die den genauen inneren Aufbau der rund sandkorngrossen Fossilien sichtbar gemacht haben.


570 Millionen Jahre alter vielzelliger Sporenkörper während der Zell- und Zellkernteilung. Die untersuchten Fossilien stammen aus Südchina. Die Aufnahmen wurden mit Hilfe der Röntgentomografie an der Synchrotron Lichtquelle Schweiz erstellt.
Nur zur Verwendung im Zusammenhang mit dieser Pressemitteilung. Copyright: Stefan Bengtson, Swedish Museum of Natural History

Alles Leben auf der Erde ist aus einem gemeinsamen einzelligen Vorfahren entstanden. Zu verschiedenen Zeiten in der Erdgeschichte taten sich Einzeller zusammen, um zu Vielzellern zu werden und so beispielsweise die Grundlage für die unüberschaubare Vielfalt der Tiere zu schaffen. Leider sind diese einschneidenden evolutionären Schritte kaum durch Fossilien belegt.

Die Fossilien, über die in der neuesten Ausgabe von Science berichtet wird, bewahren verschiedene Stufen im Lebenszyklus eines Amöbenähnlichen Organismus, der sich in einem ungeschlechtlichen Vorgang teilt, so dass zunächst zwei, dann vier, acht, sechzehn usw. Zellen entstehen. Am Ende entstehen Hunderttausende sporenartige Zellen, die freigesetzt werden und den Zyklus neu beginnen lassen können. Die Art der Zellteilung erinnert so stark an tierische (und menschliche) Embryonalentwicklung, dass man diese Organismen bislang für die Embryonen frühester Tiere gehalten hat.

Die Forschenden haben die mikroskopisch kleinen Fossilien mit hochenergetischem Röntgenlicht aus der Synchrotron Lichtquelle Schweiz des Paul Scherrer Instituts untersucht. Dabei wurde die Anordnung der Zellen innerhalb der umgebenden Schutzhülle sichtbar. Eigentlich hätten diese Organismen gar nicht zu Fossilien werden dürfen – es handelte sich ja eigentlich nur um zähflüssige Zellansammlungen. Da sie aber in Sedimenten vergraben waren, die reich an Phosphat sind, konnte dieses in die Zellwände eindringen und sie zu Stein werden lassen.

Dazu Therese Huldtgren, die Erstautorin des Artikels: „Die Fossilien sind faszinierend – sogar die Zellkerne sind erhalten.“

Mitautor John Cunningham sagt: „Wir haben einen Teilchenbeschleuniger, die Synchrotronlichtquelle SLS, für unsere Untersuchungen genutzt. Damit konnten wir ein perfektes Computermodell des Fossils erstellen, das wir in beliebiger Weise virtuell aufschneiden konnten – ohne das wirkliche Fossil zu beschädigen. Anders hätten wir diese Fossilien gar nicht untersuchen können.“

Marco Stampanoni, Leitender Wissenschaftler an der Röntgentomografie-Strahllinie der SLS fügt hinzu: „Unser tomografisches Synchrotronmikroskop ist über die Jahre immer weiter verbessert worden und liefert nun dreidimensionale Informationen über winzige Fossilien bis auf die Zellebene. Und das mit einmaliger Qualität und Zuverlässigkeit. So kann man in wenigen Minuten zerstörungsfrei die morphologische Struktur mit einer Genauigkeit von Tausendsteln eines Millimeters bestimmen.“

Mit der Methode der Röntgentomografie konnte bewiesen werden, dass die Fossilien Eigenschaften aufweisen, die mehrzellige Embryonen nicht haben. Das hat die Forschenden darauf gebracht, dass diese Fossilien keine Tiere und keine Embryonen waren, sondern vielmehr Sporenkörper einzelliger Vorfahren der Tiere.

Philip Donghue sagt: „Die Ergebnisse haben uns sehr überrascht – wir waren lange überzeugt, dass diese Fossilien Embryonen frühester Tiere waren. Vieles von dem, was in den vergangenen zehn Jahren über diese Fossilien geschrieben worden ist, ist einfach falsch. Unsere Kollegen werden nicht erfreut sein.“

Stefan Bengtson fügt hinzu: „Diese Fossilien zwingen uns unsere bisherigen Vorstellungen zu überdenken, wie sich Tiere entwickelt haben, bei denen viele Zellen grössere Organismen bilden.“

Die Forschungsarbeit wurde vom Britischen Forschungsrat für Umweltforschung, dem Schwedischen Forschungsrat, dem Paul Scherrer Institut, dem chinesischen Ministerium für Wissenschaft und Technologie, der chinesischen Stiftung für Naturwissenschaft und dem 7. EU-Rahmenprogramm finanziert.

Die beteiligten Forscher:
Therese Huldtgren ist Doktorandin in der Abteilung für Paläozoologie des Schwedischen Museums für Naturkunde und der Universität Stockholm.

Dr. John Cunningham ist wissenschaftlicher Mitarbeiter an der Fakultät für Erdwissenschaften (School of Earth Sciences) der University of Bristol.

Prof. Marco Stampanoni leitet die Synchrotrontomografiegruppe am Paul Scherrer Institut und ist Professor am Institut für Biomedizinische Technik der ETH Zürich.

Dr. Federica Marone ist Strahlliniewissenschaftlerin an der Synchrotron Lichtquelle Schweiz des Paul Scherrer Instituts.

Prof. Philip Donoghue ist Professor für Paläobiologie an der Fakultät für Erdwissenschaften (School of Earth Sciences) an der University of Bristol, Grossbritannien.

Prof. Stefan Bengtson ist Professor für Paläobiologie am Schwedischen Museum für Naturkunde in Stockholm.

Text auf Grundlage einer Meldung der Pressestelle der Universität Bristol

Originalveröffentlichung:
Fossilized nuclei and germination structures identify Ediacaran “animal embryos” as encysting protists

T. Huldtgren, J. A. Cunningham, C. Yin, M. Stampanoni, F. Marone, P. C. J. Donoghue, and S. Bengtson, Science 334 (23. Dezember 2011)

Kontakt:
Prof. Philip Donoghue ist über die Pressestelle der Universität Bristol erreichbar: Hannah Johnson, Press Officer, University of Bristol, Bristol, Grossbritannien

Telefon: +44 117 928 8896; E-Mail: hannah.johnson@bristol.ac.uk (Englisch)

Prof. Stefan Bengtson, Head of Department, Department of Palaeozoology, Swedish Museum of Natural History, Box 50007, SE-104 05 Stockholm, Sweden

Telefon: +46 8 5195 4220, E-Mail: stefan.bengtson@nrm.se [Schwedisch, Englisch, Russisch, Deutsch]

Prof. Marco Stampanoni, Labor für Makromoleküle und Bioimaging am Paul Scherrer Institut und Institut für Biomedizinische Technik der Universität und ETH Zürich, 5232 Villigen PSI, Schweiz

Telefon: +41 (0)56 310 4724; E-Mail: marco.stampanoni@psi.ch [Deutsch, Englisch, Italienisch, Französisch]

Dagmar Baroke | idw
Weitere Informationen:
http://www.psi.ch

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Nährstoffhaushalt einer neuentdeckten “Todeszone” im Indischen Ozean auf der Kippe
06.12.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Wichtiger Prozess für Wolkenbildung aus Gasen entschlüsselt
05.12.2016 | Leibniz-Institut für Troposphärenforschung e. V.

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie