Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Faltige Gesteinsschichten in 3D

06.12.2012
Wie sich Gesteinsfalten während der Verkürzung der Gesteinsschichten zu großen, länglich gezogenen Faltengürtel entwickeln können, zeigt der Geologe Bernhard Grasemann von der Universität Wien gemeinsam mit Stefan Schmalholz (Universität Lausanne) in einer Publikation in der renommierten Fachzeitschrift "Geology".
Faltengürtel sind von besonderem wirtschaftlichem Interesse, da sie etwa 15 Prozent der weltweiten Kohlenwasserstoffreserven, unter anderem fossile Brennstoffe wie Erdöl und Erdgas, beheimaten.

Geologische Falten sind Krümmungen von geologischen Grenzflächen, wie etwa die Schichtung von Sedimentgesteinen oder der Lagenbau metamorpher Gesteine. "Gesteinsfalten variieren in ihrer Größe von mikroskopischen Strukturen bis zum Maßstab von Bergen, wo sie ganze Gebirge in Form von länglich gezogenen Faltengürtel bilden", erklärt Bernhard Grasemann, Professor für Allgemeine Geologie und Geodynamik und Leiter des Departments für Geodynamik und Sedimentologie an der Universität Wien. Diese Faltengürtel sind an tektonischen Plattengrenzen entstanden – durch Kollision von Kontinenten – und Bestandteil aller großen Gebirge, wie beispielsweise den Alpen, dem Zagros-Gebirge (Iran, Irak) oder dem Himalaya.

Dreidimensionales Computermodell der Gesteinsfalten

Copyright: Universität Wien

Geradlinige oder schräge Verbindungen

Obwohl die Gesteinsdeformation in Form von Verfaltung in zweidimensionalen Profilen seit Jahrzehnten Gegenstand geologischer Untersuchungen ist, haben sich bisher kaum Studien mit dem dreidimensionalen Wachstum von Falten beschäftigt. In der gemeinsamen Publikation zeigen Bernhard Grasemann und sein Schweizer Fachkollege Stefan Schmalholz anhand von dreidimensionalen Computermodellen und natürlichen Beispielen aus dem Zagros-Gebirge im Irak, wie sich Falten während der Verkürzung der Gesteinsschichten zu großen länglich gezogenen Faltengürtel entwickeln können. "Am Beginn der Verkürzung entstehen isolierte Falten, die sich bei weiterer Verkürzung geradlinig oder schräg mit anderen Falten verbinden können", fasst Grasemann die Ergebnisse zusammen: "Ist der Abstand zwischen zwei seitlich wachsenden Falten zu groß, dann verbinden sich die Falten nicht."

Durch einen Sattel verbunden

Dabei verbinden sich die Falten über sogenannte "Sattelflächen" – als Sattelfläche wird in der Geometrie eine Fläche bezeichnet, die in den beiden Hauptrichtungen entgegengesetzt gekrümmt ist, wie etwa ein Pferdesattel. "Das ist deshalb bedeutend, weil man durch Erkennen dieser Positionen ursprünglich getrennte Faltensegmente identifizieren kann", erklärt der Geologe. Auch für die Wirtschaft sind die neuen Erkenntnisse von großer Relevanz: "Die Faltenverbindungen ermöglichen das Migrieren von Kohlenwasserstoffen von einer Falte in das seitlich anschließende Faltensegment. Dadurch lässt sich die mögliche Ausbreitung von Kohlenwasserstoffen vorhersagen", erklärt Grasemann.

Die Publikation ist die aktuellste einer Reihe von Veröffentlichungen, u.a. in den Journals "Geology", "Tectonics", "Basin Research" und "AAPG Bulletin", die im Rahmen des dreijährigen Forschungsprojekts "Quantitative structural modelling of the Zagros Fold-and-Thrust Belt in Kurdistan Region of Iraq" unter der Leitung von Bernhard Grasemann entstanden sind. In seinem aktuellen Projekt erarbeitet Grasemann ein 3D-Strukturmodell des Libanon-Gebirges; die Forschungsarbeiten werden von der OMV Exploration & Production GmbH finanziert.

Publikation in "Geology":
"Lateral fold growth and fold linkage": B. Grasemann und S. M. Schmalholz, in "Geology" (40, 1039-1042), 2012. http://geology.gsapubs.org/content/early/2012/08/22/G33613.1.abstract

Wissenschaftlicher Kontakt
Univ.-Prof. Mag. Dr. Bernhard Grasemann
Department für Geodynamik und Sedimentologie
1090 Wien, Althanstraße 14 (UZA II)
T +43-1-4277-534 72
bernhard.grasemann@univie.ac.at
http://geologie.univie.ac.at
Rückfragehinweis
Mag. Alexandra Frey
Pressebüro der Universität Wien
Forschung und Lehre
1010 Wien, Universitätsring 1
T +43-1-4277-175 33
M +43-664-602 77-175 33
alexandra.frey@univie.ac.at

Veronika Schallhart | Universität Wien
Weitere Informationen:
http://www.univie.ac.at

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen
18.08.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Klimawandel: Bäume binden im Alter große Mengen Kohlenstoff
17.08.2017 | Universität Hamburg

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie