Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Europäischer Satellit auf Wassermission – LMU-Team unterstützt Vermessung von Klimafaktoren

07.05.2010
Der Wassergehalt des Bodens ist nicht nur essenziell für das Pflanzenwachstum, sondern auch für den Austausch von Wasser und Energie mit der Atmosphäre.

Als Teil ihrer Serie der „Earth Explorer“-Satelliten startete die Europäische Weltraumagentur (ESA) im November 2009 den innovativen Umweltforschungssatelliten SMOS („Soil Moisture and Ocean Salinity“). Er liefert weltweit Informationen über die Bodenfeuchte der Landoberflächen und den Salzgehalt der Ozeane – die damit erstmals aus dem All gemessen werden.

Umfangreiche Geländekampagnen liefern ergänzende Daten, mit deren Hilfe das Messgerät an Bord des Satelliten kalibriert und validiert wird. Eine der größten europäischen Kampagnen wird von einem Forscherteam der Geographie der LMU in Zusammenarbeit mit der ESA und dem Deutschen Zentrum für Luft- und Raumfahrt e.V. (DLR) von Mitte Mai bis Mitte Juni in Süddeutschland durchgeführt. „Alle Ergebnisse sollen in ozeanographische, hydrologische und meteorologische Modelle eingespeist werden“, sagt Professor Wolfram Mauser, der Leiter des LMU-Teams. „Auf diesem Weg wollen wir Vorhersagen und globale Klimaprognosen verbessern.“

Der Wassergehalt des Bodens ist nicht nur essenziell für das Pflanzenwachstum, sondern auch für den Austausch von Wasser und Energie mit der Atmosphäre. Ist wenig Wasser im Boden, nimmt die Verdunstung ab, und die verfügbare solare Energie führt zu einer Erwärmung der bodennahen Luftschichten und einer deutlichen Temperaturzunahme. „Auch die Hitzewelle 2003 wurde durch sehr geringe Bodenfeuchte verstärkt“, berichtet der LMU-Geograph Professor Wolfram Mauser. „Der Wassergehalt regelt aber auch, wieviel Niederschlag in den Boden eindringen kann. Ist der Boden bereits gesättigt, kann es schneller zu Hochwasser und Überflutung kommen.“ Für eine bessere Vorhersage des Wetters und Klimas ist die Wissenschaft auf genauere Daten über den Wasseraustausch zwischen den Ozeanen, den Landflächen und der Atmosphäre angewiesen.

Diese Informationen soll nun der europäische Umweltforschungssatellit SMOS liefern. Dank einer neuen Technologie können die wichtigen Klimaparameter Bodenfeuchte und Salzgehalt der Ozeane erstmals weltweit aus dem All gemessen werden. Herzstück der Mission ist der Mikrowellensensor MIRAS, der die natürliche Ausstrahlung der Erde bei 1,4 Gigahertz misst. In mehreren Ländern laufen Projekte, um die Zuverlässigkeit und Genauigkeit der SMOS-Daten zu prüfen und ihre schnelle Anwendung zu ermöglichen. Hierzu werden Simulationen, Daten aus Messstationen und flugzeuggestützte Vergleichsdaten herangezogen. Eine der größten dieser sogenannten cal/val Kampagnen in Europa wird von Forschern der LMU in Süddeutschland durchgeführt. Dabei wird ein Team von etwa 20 Wissenschaftlern an mehreren Tagen in Ostbayern umfangreiche Geländemessungen durchführen. Die gewonnenen Daten können dann mit Satellitendaten, Flugzeugmessdaten und Simulationen verglichen werden, um die Genauigkeit des Satelliten zu analysieren.

Ergänzt werden die Messungen von einem Forschungsflugzeug der Technischen Universität Helsinki, das an acht Tagen zwischen Mitte Mai und Mitte Juni vom Flughafen Oberpfaffenhofen aus Messflüge in Bayern durchführen wird. Die Messgeräte arbeiten nach dem gleichen Prinzip wie das Messgerät auf dem Satelliten. Die Erwartungen der Wissenschaftler an die neuen Satellitendaten sind hoch, und die Aktivitäten und internationalen Beteiligungen im Zusammenhang mit der sogenannten „Wassermission“ entsprechend umfangreich. Schließlich versprechen die Messungen Einblicke in den globalen Wasserkreislauf, also den Wasseraustausch zwischen Erde, Ozean und Atmosphäre – und einen maßgeblichen Faktor des Wetters und Klimas. „Alle Daten sollen in ozeanographische, hydrologische und meteorologische Modelle eingespeist werden“, sagt Professor Wolfram Mauser. „Auf diesem Weg wollen wir Vorhersagen und globale Klimaprognosen verbessern.“ (suwe)

Die Untersuchungen der LMU-Wissenschaftler finden im Rahmen des Projektes SMOSHYD statt, das vom Deutschen Luft- und Raumfahrtzentrum (DLR) gefördert wird.

Weitere Informationen:
LMU Geographie, Projekt SMOSHYD
www.geographie.uni-muenhen.de/department/fiona/forschung/projekte/index.php?projekt_id=103
Deutsches SMOS-Projektbüro
www.smos.zmaw.de/
ESA
www.esa.int/esaCP/SEMB4L4AD1G_Germany_0.html
Ansprechpartner:
Prof. Dr. Wolfram Mauser
Tel.: 089 / 2180 - 6674
E-Mail: w.mauser@lmu.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.lmu.de
http://www.esa.int/esaCP/SEMB4L4AD1G_Germany_0.html

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Internationales Team um Oldenburger Meeresforscher untersucht Meeresoberfläche
21.03.2017 | Carl von Ossietzky-Universität Oldenburg

nachricht Weniger Sauerstoff – ist Humboldts Nährstoffspritze in Gefahr?
17.03.2017 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen