Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erfolgreiche Bohrung am El'gygytgyn-Meteoritenkrater

22.05.2009
Christian Koeberl erforscht 3,6 Millionen Jahre alte Impaktgesteine

Christian Koeberl, Leiter des Departments für Lithosphärenforschung der Universität Wien, ist vor kurzem aus der sibirischen Arktis zurückgekehrt.

Er ist einer der Projektleiter des vor wenigen Wochen im Rahmen des International Continental Scientific Drilling Program (ICDP) durchgeführten Tiefbohrprojektes am Elgygytgyn-Kratersee. Ziel der Unternehmung ist es, durch Analyse der Bohrkerne neue Erkenntnisse im Bereich der Impaktforschung, aber auch zur arktischen Klimaentwicklung zu gewinnen. Die Impaktbrekzien werden unter der Leitung von Christian Koeberl im Rahmen eines FWF-Projektes an der Universität Wien untersucht.

Der Elgygytgyn-See ist vor ca. 3,6 Millionen Jahren durch einen Meteoriteneinschlag entstanden. Der Krater und der darin befindliche See sind aus zwei Gründen für die Forschung interessant: Erstens handelt es sich um den einzigen bisher bekannten Meteoritenkrater in sauren vulkanischen Gesteinen und bietet daher die Möglichkeit, Impakteffekte an solchen Gesteinen zu untersuchen. Das ist für die vergleichende Planetenforschung von großem Interesse. Zweitens handelt es sich bei den mehr als 300 Meter langen Seesedimenten um ein einzigartiges Archiv der bisher wenig bekannten Klimageschichte in der Arktis. Die Auswertung der Daten wird zu einem besseren Verständnis von Ursache- und Wirkungsbeziehungen für Klimaveränderungen beitragen. Diese Prognosen sind für die zukünftige Klimaentwicklung von großer Bedeutung.

Impaktbrekzien liefern neue Erkenntnisse zum Meteoriteneinschlag

Das extrem aufwendige Bohrprojekt wurde Anfang Mai erfolgreich abgeschlossen. Wie erhofft wurden unter den Seesedimenten tatsächlich Impaktbrekzien erbohrt. Direkt unter den Seesedimenten befindet sich eine mehrere Dutzend Meter mächtige Schicht an sogenannten Sueviten. Dies sind impaktglashältige Brekzien, die aus Trümmern verschiedener Gesteinsarten bestehen und mit einer feinkörnigen Matrix zementiert sind. Solche Gesteine kennt man auf der Erde nur von Meteoritenkratern. Unter diesen Sueviten fand sich zerrüttetes vulkanisches Grundgebirge, das während des Meteoriteneinschlages geschockt, zerbrochen und hochgehoben wurde. Bei der Bildung des Zentralberges, der für einen Krater dieser Größe auf der Erde typisch ist, federt tief liegendes Gestein zur Oberfläche und erstarrt. Krater mit Zentralbergen nennt man auch "komplexe" Impaktkrater. In weniger als einer Minute hebt sich ein Berg von mehreren Kilometern Durchmesser um mehr als einen Kilometer aus dem Boden. Mit den über 200 Metern Impaktbrekzien, die bei der Bohrung gewonnen wurden, wird der Prozess des Meteoriteneinschlags genau untersucht werden können. Insgesamt wurde im Rahmen dieses Projektes eine Bohrtiefe von 517,3 Meter unter dem Seeboden, bzw. von der Oberfläche von 687,3 m erreicht.

Vulkanite werden über mehrere Jahre an der Universität Wien untersucht

Die Bohrkerne werden im Juni von der Stadt Pevek am Eismeer mittels Charterflugzeug nach St. Petersburg gebracht. Dort beginnt der lange Prozess der Ausfuhrgenehmigungen. September/Oktober 2009 werden die Bohrkerne in Deutschland eintreffen, von wo aus die weiteren Untersuchungen koordiniert werden. Die Gesamtauswertung benötigt mehrere Jahre. In Österreich werden unter der Leitung von Impaktforscher Christian Koeberl die Impaktgesteine für das gesamte internationale Projekt im Rahmen eines soeben genehmigten FWF Forschungsprojektes bearbeitet. Neben der genauen Studie der geschockten Vulkanite, wird die Natur des Asteroiden, der den Krater gebildet hat, analysiert. Darüber hinaus wird man eine Aussage über die Energieverhältnisse beim Einschlag, und daher über die Auswirkungen des Einschlages auf die Umwelt, machen können.

Komplexe Vorbereitungen mit enormem finanziellen Aufwand

Am 14. April 2009 erreichten die WissenschafterInnen bei einer Tiefe von ca. 312 Meter unter dem Seeboden (482 Meter Gesamttiefe) den Übergang zwischen den Seesedimenten und den Impaktgesteinen - und damit den Zeitmarker von 3,6 Millionen Jahren. Diesem wichtigen Etappensieg in dem Projekt ging ein langer und schwieriger Weg voraus: Allein für die wissenschaftliche Planung, die Finanzierungsanträge, und die Beschaffung der nötigen Bewilligungen wurden acht Jahre benötigt. Vor Ort stellte sich dann z.B. heraus, dass man die Eisdecke über dem 170 Meter tiefen See für die etwa 75 Tonnen schwere Bohrplattform und den verschiedenen Bulldozer und anderen Gefährten verstärken musste. Es wurde Seewasser an die Eisoberfläche gepumpt, wo es dann auf Grund der niedrigen Temperaturen erstarrte. Mehrere hundert Tonnen Ausrüstung mussten teilweise von Übersee in diesen sehr entlegenen Teil Sibiriens gebracht werden. Die nächstgelegene Stadt ist Pevek am arktischen Ozean, 350 km von der Bohrplattform entfernt. Dort gibt es einen Flughafen und Hafen - ersterer wird allerdings nur alle zwei Wochen (von Moskau aus) angeflogen, letzterer ist nur drei Monate im Sommer offen, ansonsten zugefroren. Im Sommer 2008 wurde bereits die gesamte Bohranlage nach Pevek verschifft. Temperaturen von bis zu -30°C und Stürme mit bis 100 km/h, die dann zu "Wind-Chill"-Temperaturen von -50°C führen, erschwerten die Arbeiten. Der größte Teil der Ausrüstung wurde über Land auf einer speziell errichteten "Schneepiste" zum Kratersee gebracht, während Personal und WissenschafterInnen sowie spezielle Geräte mit dem Lastenhubschrauber von Pevek eingeflogen wurden. Jeder der bisher etwa 15 Flüge kostete ca.13.000 Euro.

Insgesamt ergaben sich Kosten von etwa 10 Millionen US-Dollar für die Bohrung. Darin sind die ab jetzt mehrere Jahre dauernden wissenschaftlichen Untersuchungen der erhaltenen Bohrkerne noch nicht inkludiert. Die Bohrkosten werden hauptsächlich von ICDP, der US-amerkanischen National Science Foundation, und dem deutschen Bundesministerium für Bildung und Forschung getragen. Auch das Bundesministerium für Wissenschaft und Forschung in Wien hat 100.000 Euro zu den Bohrkosten beigetragen. Weitere Projektpartner sind Prof. Julie Brigham-Grette (University of Massachusetts-Amherst, USA), Prof. Martin Melles (Universität Köln, Deutschland) und Dr. Pavel Minyuk (Russische Akademie der Wissenschaften, Magadan, Russische Föderation).

Kontakt:
V.-Prof. Dr. Christian Koeberl
Department für Lithosphärenforschung
Universität Wien
1090 Wien, Althanstraße 14 (UZA II)
T +43-1-4277-531 10
christian.koeberl@univie.ac.at
Rückfragehinweise
Mag. Veronika Schallhart
Öffentlichkeitsarbeit
Universität Wien
1010 Wien, Dr.-Karl-Lueger-Ring 1
T +43-1-4277-175 30
M +43-664-602 77-175 30
veronika.schallhart@univie.ac.at

Veronika Schallhart | idw
Weitere Informationen:
http://www.univie.ac.at/geochemistry/koeberl
http://lithosphere.univie.ac.at

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Stagnation im tiefen Südpazifik erklärt natürliche CO2-Schwankungen
23.02.2018 | Carl von Ossietzky-Universität Oldenburg

nachricht Birgt Mikroplastik zusätzliche Gefahren durch Besiedlung mit schädlichen Bakterien?
21.02.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics