Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erfolg in der Arktis: Wissenschaftler-Team gelingt Vermessung von „dünnem“ Eis

14.04.2014

Zwei Wochen waren Wissenschaftlerinnen und Wissenschaftler an Bord des von der Universität Hamburg gecharterten Forschungsschiffes „RV Lance“ unterwegs. Begleitet wurde die Kampagne vom Forschungsflugzeug Polar 5 des Alfred-Wegener-Instituts und zahlreichen Helikopterflügen. Mit Erfolg: Eine clevere Kombination aus Satellitendaten, Eisradar und Modellierung schafft die Grundlage für eine Vermessung der dünner werdenden Eisdecke und eine sichere Navigation in der Arktis.

Es klingt paradox, doch gerade dünnes Eis kann Schiffen in der Arktis gefährlich werden. „Wind und Meeresströmungen schieben die vergleichsweise dünne Eisdecke zusammen“, berichtet Prof. Lars Kaleschke vom Centrum für Erdsystemforschung und Nachhaltigkeit der Universität Hamburg (CEN). „Wo es vorher gut voran ging, türmen sich plötzlich hohe Presseis-Rücken und schließen Schiffe und Mannschaften ein.“


Für das menschliche Auge gut zu sehen: das Meereis in der Arktis kann unterschiedlich dick und massiv sein. Die Satellitendaten so zu interpretieren, dass Schiffe dickem Eis ausweichen können, ist Ziel des Projektes. Foto: Stefan Hendricks, Alfred-Wegener-Institut

Gleichzeitig ist die exakte Bestimmung der Eisdecke schwierig. Zwar liefern Satelliten Informationen, bisher aber nur über Eisdicken ab einem Meter. „Das saisonale Eis, das sich jährlich neu bildet und sich im Zuge des Klimawandels massiv verändert, ist jedoch meist dünner“, berichtet Kaleschke. „Die globale Erwärmung wirkt sich auf die Menge des Eises in der Fläche, aber auch auf die Dicke aus. Dünnes Eis ist das Eis der Zukunft.“

Gemeinsam mit den Kollegen vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI), gelang es Kaleschke erstmals, mithilfe des SMOS-Satelliten der European Space Agency (ESA), Eisdicken unter einem Meter zu bestimmen. Wie exakt das Verfahren ist, konnte jetzt anhand von Messungen an Bord der „Lance“ überprüft werden: Mittels elektromagnetischer Wellen wurde während der gesamten Fahrt die Dicke des durchquerten Eises vermessen und mit den SMOS-Daten verglichen. Gleichzeitig wurde abseits des Schiffes mit dem Bordhelikopter ein weiterer elektromagnetischer Sensor geschleppt. Und in größerer Höhe sowie mit größerer Geschwindigkeit erweiterte das Forschungsflugzeug Polar 5 das Messgebiet.

Der AWI-Meereisphysiker Dr. Stefan Hendricks untersuchte das dünne einjährige Eis zusammen mit Kolleginnen und Kollegen der europäischen Weltraumagentur ESA und der Technischen Universität Dänemark (DTU). Dabei setzten sie EMIRAD ein, ein Messgerät, das auf den gleichen Prinzipien wie SMOS beruht, aber ein detaillierteres Bild des Dünneises liefert als der Satellit. Unterstützt wurden die Messungen von einem neuartigen Radar, mit dem ergänzend die Dicke der Schneeschicht gemessen wurde. Zwei der Messflüge fanden kombiniert mit Helikopter und Flugzeug statt, ein weiterer direkt unter der Flugbahn des Satelliten Cryosat-2. Letzterer misst ebenfalls Eisdicken, allerdings nur über einem Meter Dicke. „Bei der Auswertung liegt der Schwerpunkt darin, die Daten der beiden Satelliten Cryosat-2 und SMOS zu vergleichen und wenn möglich zu kombinieren – und so zu einer noch besseren Beobachtung des Eises aus dem Weltraum zu kommen“, so Hendricks.

Während der gesamten Expedition navigierte die „Lance“ zudem mithilfe eines neuartigen Eis-Vorhersagesystems, das der Schifffahrt künftig eine sichere Passage durch polare Regionen ermöglichen soll. Grundlage ist ein von der Universität Hamburg entwickeltes Rechenmodell. Zweimal täglich liefern die Wissenschaftler damit Angaben zur Ausdehnung, Dicke und Bewegung des Eises an die Hamburgische Schiffbau-Versuchsanstalt (HSVA). Von dort aus werden die Daten an Schiffe in der Arktis übermittelt – zusammen mit einer individualisierten Routenempfehlung. „Das Ganze funktioniert wie eine Art Stauwarnsystem“, berichtet Dipl.-Ing. Peter Jochmann von der HSVA. „Nur, dass es hier nicht um Verkehrsdichte geht, sondern darum, wann und bei welcher Geschwindigkeit das Schiff die Eiskante erreicht, wie dick die Schollen sind und welche Alternativrouten infrage kommen.“

Auch in diesem Punkt verlief die Fahrt als Praxistest erfolgreich: Die Vorhersage führte das Schiff nicht nur sicher durch das schwierige Meeresgebiet, die vorgeschlagenen Routen erwiesen sich am Ende auch als durchweg schneller als die ursprüngliche Fahrtplanung. Probleme hatte die „Lance“ lediglich, als sie versuchte – entgegen der vom System vorgeschlagenen Route – auf dem vermeintlich schnellsten, da direkten Weg an ihren Ausgangspunkt zurückzugelangen. Schon nach wenigen Kilometern musste das Schiff umkehren.

An den Kampagnen IRO-2 (Ice-Routing Optimization) und SMOSIce beteiligen sich neben der Hamburgischen Schiffbau-Versuchsanstalt, die das Verbundprojekt koordiniert, die Universitäten Hamburg und Bremen, das Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, die Ocean Atmosphere Systems GmbH, die FastOpt GmbH, das National Space Institute der Technical University of Denmark, das Norwegian Polar Institute, das Bundesamt für Seeschifffahrt und Hydrographie, die Joachim Schwarz Consulting und die European Space Agency (ESA). IRO-2 wurde gefördert vom Bundesministerium für Wirtschaft und Energie. SMOSIce wird finanziert von der European Space Agency, die Helikopterflüge mit Mitteln des Norwegian Polar Institute und die Eisdriftbojen mit Geldern der Deutschen Forschungsgemeinschaft (DFG).

Bildergalerie: Impressionen von der gemeinsamen Kampagne:

http://www.awi.de/de/aktuelles_und_presse/bild_film_ton/bildergalerien/fotogaler...

Mehr zum Thema:

http://www.iro-2.de

http://blogs.esa.int/campaignearth/

Sichere Schiffspassage: Wissenschaftler erproben Vorhersage für arktisches Meereis:

http://www.mi.uni-hamburg.de/IRO-2.7051.0.html?&L=3

http://www.hsva.de

Rückfragen:

Prof. Dr. Lars Kaleschke,
Institut für Meereskunde
Centrum für Erdsystemforschung und Nachhaltigkeit der Universität Hamburg,
Tel.: 040 42838 6518
E-Mail: lars.kaleschke@zmaw.de

Ute Kreis
Presse- und Öffentlichkeitsarbeit
Centrum für Erdsystemforschung und Nachhaltigkeit der Universität Hamburg
Tel.: 040 42838 4523
E-Mail: ute.kreis@zmaw.de

Dr. Stefan Hendricks
Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung
Tel.: 0471 4831 1874
E-Mail: Stefan.Hendricks@awi.de

Dr. Folke Mertens
Kommunikation und Medien
Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung
Tel.: 0471 4831 2007
E-Mail: Folke.Mehrtens@awi.de

Dipl.-Ing. Peter Jochmann
Hamburgische Schiffbau-Versuchsanstalt
Tel.: 040 69203 425
E-Mail: jochmann@hsva.de

Gemeinsame Pressemitteilung der Universität Hamburg und des Alfred-Wegener-Instituts

Birgit Kruse | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Internationales Team um Oldenburger Meeresforscher untersucht Meeresoberfläche
21.03.2017 | Carl von Ossietzky-Universität Oldenburg

nachricht Weniger Sauerstoff – ist Humboldts Nährstoffspritze in Gefahr?
17.03.2017 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie