Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Erde atmet

01.03.2010
ForscherInnen am Institut für Geodäsie und Geophysik der Technischen Universität (TU) Wien untersuchen die Auswirkungen der Erdatmosphäre auf die Figur, das Rotationsverhalten und das Schwerefeld unseres Planeten.

Die Erdatmosphäre bildet nicht nur die Voraussetzung für menschliches Leben auf der Erde, sondern verändert auch deren Figur, das Rotationsverhalten und das Schwerefeld unseres Planeten.

Das Forschungsprojekt "Global Geodetic Observing System (GGOS) Atmosphäre" behandelt diese komplexen Zusammenhänge in einem umfassenden und fachübergreifenden Ansatz und wird vom Fonds zur Förderung der wissenschaftlichen Forschung (FWF) finanziert. Dadurch trägt die Wissenschaft zu einem besseren Verständnis des Systems Erde bei und unterstützt die Entwicklung des weltweiten geowissenschaftlichen Beobachtungssystems Global Geodetic Observing System (GGOS).

Am Puls der Erde

In der modernen Geodäsie und im speziellen bei den geodätischen Weltraumverfahren müssen verschiedene Einflüsse der Atmosphäre berücksichtigt werden. Die Atmosphäre verzögert die Radiosignale der GPS-Satelliten wie auch jene der extragalaktischen Radioquellen, die mit dem Verfahren der Very Long Baseline Interferometry (VLBI) beobachtet werden. Atmosphärische Auflasten (= Luftdruck), z.B. während einer Hochdruckwetterlage, deformieren die quasi elastisch reagierende Erde um bis zu zwei Zentimeter und verändern auch die Erdanziehung. Entsprechend müssen Beobachtungen des Erdschwerefeldes, die z.B. mit speziellen Satellitenmissionen durchgeführt werden, wegen atmosphärischer Effekte korrigiert werden. Schließlich werden auch kleine, aber messbare Schwankungen der Erdrotation, die sich durch die Polbewegung und Veränderungen der Länge eines Tages ausdrücken, zu einem beträchtlichen Teil durch Prozesse in der Atmosphäre verursacht.

Weltumspannende Beobachtung und Vernetzung

Die Atmosphäre spielt daher eine entscheidende Rolle für die Entwicklung des "Global Geodetic Observing System (GGOS)" der International Association of Geodesy (IAG) mit seiner zentralen Thematik 'Globale Deformation und Massenverlagerungen im System Erde' zu erforschen. Innerhalb von GGOS, an dem weltweit Hunderte von GeowissenschafterInnen mitarbeiten, sollen die unterschiedlichen geodätischen und geophysikalischen Messungen integriert und kombiniert werden, die heutzutage auf der Erde oder vom Weltall aus durchgeführt werden. "Nur so lassen sich Schlussfolgerungen mit großer Relevanz für die Gesellschaft ziehen, wie z.B. Aussagen für die Klimaforschung oder die Vorhersage von Naturkatastrophen", erklärt TU-Forscher Johannes Böhm.

Wichtige Voraussetzung dieses weltweiten geowissenschaftlichen Beobachtungssystems sind dabei präzise globale Referenzrahmen. Nur wenn ein stabiles, extrem genaues und weltweites Netz von Festpunkten vorliegt, können langsame Veränderungen auf der Erde, wie z.B. die Bewegung der Kontinentalplatten oder Meeresspiegelvariationen exakt bestimmt werden.

Wetterdaten für geodynamische Parameter

Die zentrale Aufgabe des Projektes "GGOS Atmosphäre" ist es, konsistente und homogene Modelle für (1) atmosphärische Auflasteffekte, (2) atmosphärische Drehimpulsfunktionen und (3) Koeffizienten des Gravitationspotentiales der Atmosphäre aus einem gemeinsamen Datensatz zu berechnen. Und das jeweils mit denselben meteorologischen Größen wie Luftdruck, Temperatur, Luftfeuchtigkeit und Windgeschwindigkeit. Verwendet werden dabei Daten des European Centre for Medium-Range Weather Forecasts (ECMWF) mit der höchstmöglichen räumlichen und zeitlichen Auflösung.

Die Einflüsse von verschiedenen Datenklassen des ECMWF sowie der unterschiedlichen geophysikalischen Modelle auf die drei oben beschriebenen Phänomene werden untersucht. Sobald die am besten geeigneten Klassen und Modelle gefunden sind, werden am Institut für Geodäsie und Geophysik die Auflasteffekte, Drehimpulsfunktionen, und Koeffizienten des Gravitationspotentiales der Atmosphäre umfassend für den gesamten Zeitraum der vorliegenden weltraumgeodätischen Beobachtungen berechnet und der internationalen Wissenschaftsgemeinschaft zur Verfügung gestellt. Die Erkenntnisse aus dem Forschungsprojekt erhöhen das Verständnis des Systems Erde. Dieses beruht auf der fachübergreifenden Kenntnis der Wechselwirkungen zwischen den verschiedenen Komponenten der Erde (z.B. feste Erde, Ozeane, Atmosphäre) und der entsprechenden Veränderungen von Geometrie, Rotation und Schwerefeld der Erde.

Links:
Global Geodetic Observing System: http://www.ggos.org/
European Centre for Medium-Range Weather Forecasts: http://www.ecmwf.int/
International Association of Geodesy: http://www.iag-aig.org/
Rückfragehinweis:
Privatdoz. Dipl.-Ing. Dr.techn. Johannes Böhm
Technische Universität Wien
Institut für Geodäsie und Geophysik
Gußhausstraße 25-29, 1040 Wien
T: +43 (1) 58801 - 128 64
F: +43 (1) 58801 - 128 96
johannes.boehm@tuwien.ac.at

Werner Sommer | idw
Weitere Informationen:
http://www.tuwien.ac.at
http://info.tuwien.ac.at/hg/staff/johannes.boehm

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Tauender Permafrost setzt altes Treibhausgas frei
19.07.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

nachricht Staubablagerungen geben Neues zur Entstehungsgeschichte der Sahara preis
19.07.2017 | Universität Leipzig

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: Das Proton präzise gewogen

Wie schwer ist ein Proton? Auf dem Weg zur möglichst exakten Kenntnis dieser fundamentalen Konstanten ist jetzt Wissenschaftlern aus Deutschland und Japan ein wichtiger Schritt gelungen. Mit Präzisionsmessungen an einem einzelnen Proton konnten sie nicht nur die Genauigkeit um einen Faktor drei verbessern, sondern auch den bisherigen Wert korrigieren.

Die Masse eines einzelnen Protons noch genauer zu bestimmen – das machen die Physiker um Klaus Blaum und Sven Sturm vom Max-Planck-Institut für Kernphysik in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

Technologietag der Fraunhofer-Allianz Big Data: Know-how für die Industrie 4.0

18.07.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - September 2017

17.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

1,4 Millionen Euro für Forschungsprojekte im Industrie 4.0-Kontext

20.07.2017 | Förderungen Preise

Von photonischen Nanoantennen zu besseren Spielekonsolen

20.07.2017 | Physik Astronomie

Bildgebung von entstehendem Narbengewebe

20.07.2017 | Biowissenschaften Chemie