Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Erde atmet

01.03.2010
ForscherInnen am Institut für Geodäsie und Geophysik der Technischen Universität (TU) Wien untersuchen die Auswirkungen der Erdatmosphäre auf die Figur, das Rotationsverhalten und das Schwerefeld unseres Planeten.

Die Erdatmosphäre bildet nicht nur die Voraussetzung für menschliches Leben auf der Erde, sondern verändert auch deren Figur, das Rotationsverhalten und das Schwerefeld unseres Planeten.

Das Forschungsprojekt "Global Geodetic Observing System (GGOS) Atmosphäre" behandelt diese komplexen Zusammenhänge in einem umfassenden und fachübergreifenden Ansatz und wird vom Fonds zur Förderung der wissenschaftlichen Forschung (FWF) finanziert. Dadurch trägt die Wissenschaft zu einem besseren Verständnis des Systems Erde bei und unterstützt die Entwicklung des weltweiten geowissenschaftlichen Beobachtungssystems Global Geodetic Observing System (GGOS).

Am Puls der Erde

In der modernen Geodäsie und im speziellen bei den geodätischen Weltraumverfahren müssen verschiedene Einflüsse der Atmosphäre berücksichtigt werden. Die Atmosphäre verzögert die Radiosignale der GPS-Satelliten wie auch jene der extragalaktischen Radioquellen, die mit dem Verfahren der Very Long Baseline Interferometry (VLBI) beobachtet werden. Atmosphärische Auflasten (= Luftdruck), z.B. während einer Hochdruckwetterlage, deformieren die quasi elastisch reagierende Erde um bis zu zwei Zentimeter und verändern auch die Erdanziehung. Entsprechend müssen Beobachtungen des Erdschwerefeldes, die z.B. mit speziellen Satellitenmissionen durchgeführt werden, wegen atmosphärischer Effekte korrigiert werden. Schließlich werden auch kleine, aber messbare Schwankungen der Erdrotation, die sich durch die Polbewegung und Veränderungen der Länge eines Tages ausdrücken, zu einem beträchtlichen Teil durch Prozesse in der Atmosphäre verursacht.

Weltumspannende Beobachtung und Vernetzung

Die Atmosphäre spielt daher eine entscheidende Rolle für die Entwicklung des "Global Geodetic Observing System (GGOS)" der International Association of Geodesy (IAG) mit seiner zentralen Thematik 'Globale Deformation und Massenverlagerungen im System Erde' zu erforschen. Innerhalb von GGOS, an dem weltweit Hunderte von GeowissenschafterInnen mitarbeiten, sollen die unterschiedlichen geodätischen und geophysikalischen Messungen integriert und kombiniert werden, die heutzutage auf der Erde oder vom Weltall aus durchgeführt werden. "Nur so lassen sich Schlussfolgerungen mit großer Relevanz für die Gesellschaft ziehen, wie z.B. Aussagen für die Klimaforschung oder die Vorhersage von Naturkatastrophen", erklärt TU-Forscher Johannes Böhm.

Wichtige Voraussetzung dieses weltweiten geowissenschaftlichen Beobachtungssystems sind dabei präzise globale Referenzrahmen. Nur wenn ein stabiles, extrem genaues und weltweites Netz von Festpunkten vorliegt, können langsame Veränderungen auf der Erde, wie z.B. die Bewegung der Kontinentalplatten oder Meeresspiegelvariationen exakt bestimmt werden.

Wetterdaten für geodynamische Parameter

Die zentrale Aufgabe des Projektes "GGOS Atmosphäre" ist es, konsistente und homogene Modelle für (1) atmosphärische Auflasteffekte, (2) atmosphärische Drehimpulsfunktionen und (3) Koeffizienten des Gravitationspotentiales der Atmosphäre aus einem gemeinsamen Datensatz zu berechnen. Und das jeweils mit denselben meteorologischen Größen wie Luftdruck, Temperatur, Luftfeuchtigkeit und Windgeschwindigkeit. Verwendet werden dabei Daten des European Centre for Medium-Range Weather Forecasts (ECMWF) mit der höchstmöglichen räumlichen und zeitlichen Auflösung.

Die Einflüsse von verschiedenen Datenklassen des ECMWF sowie der unterschiedlichen geophysikalischen Modelle auf die drei oben beschriebenen Phänomene werden untersucht. Sobald die am besten geeigneten Klassen und Modelle gefunden sind, werden am Institut für Geodäsie und Geophysik die Auflasteffekte, Drehimpulsfunktionen, und Koeffizienten des Gravitationspotentiales der Atmosphäre umfassend für den gesamten Zeitraum der vorliegenden weltraumgeodätischen Beobachtungen berechnet und der internationalen Wissenschaftsgemeinschaft zur Verfügung gestellt. Die Erkenntnisse aus dem Forschungsprojekt erhöhen das Verständnis des Systems Erde. Dieses beruht auf der fachübergreifenden Kenntnis der Wechselwirkungen zwischen den verschiedenen Komponenten der Erde (z.B. feste Erde, Ozeane, Atmosphäre) und der entsprechenden Veränderungen von Geometrie, Rotation und Schwerefeld der Erde.

Links:
Global Geodetic Observing System: http://www.ggos.org/
European Centre for Medium-Range Weather Forecasts: http://www.ecmwf.int/
International Association of Geodesy: http://www.iag-aig.org/
Rückfragehinweis:
Privatdoz. Dipl.-Ing. Dr.techn. Johannes Böhm
Technische Universität Wien
Institut für Geodäsie und Geophysik
Gußhausstraße 25-29, 1040 Wien
T: +43 (1) 58801 - 128 64
F: +43 (1) 58801 - 128 96
johannes.boehm@tuwien.ac.at

Werner Sommer | idw
Weitere Informationen:
http://www.tuwien.ac.at
http://info.tuwien.ac.at/hg/staff/johannes.boehm

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Neue Einblicke in das 2004 Sumatra-Erdbeben
14.11.2017 | Technische Universität München

nachricht Folgen des Klimawandels: Oder warum wird das Wasser unter Borkum überwacht?
14.11.2017 | Leibniz-Institut für Angewandte Geophysik

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte