Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Erde atmet

01.03.2010
ForscherInnen am Institut für Geodäsie und Geophysik der Technischen Universität (TU) Wien untersuchen die Auswirkungen der Erdatmosphäre auf die Figur, das Rotationsverhalten und das Schwerefeld unseres Planeten.

Die Erdatmosphäre bildet nicht nur die Voraussetzung für menschliches Leben auf der Erde, sondern verändert auch deren Figur, das Rotationsverhalten und das Schwerefeld unseres Planeten.

Das Forschungsprojekt "Global Geodetic Observing System (GGOS) Atmosphäre" behandelt diese komplexen Zusammenhänge in einem umfassenden und fachübergreifenden Ansatz und wird vom Fonds zur Förderung der wissenschaftlichen Forschung (FWF) finanziert. Dadurch trägt die Wissenschaft zu einem besseren Verständnis des Systems Erde bei und unterstützt die Entwicklung des weltweiten geowissenschaftlichen Beobachtungssystems Global Geodetic Observing System (GGOS).

Am Puls der Erde

In der modernen Geodäsie und im speziellen bei den geodätischen Weltraumverfahren müssen verschiedene Einflüsse der Atmosphäre berücksichtigt werden. Die Atmosphäre verzögert die Radiosignale der GPS-Satelliten wie auch jene der extragalaktischen Radioquellen, die mit dem Verfahren der Very Long Baseline Interferometry (VLBI) beobachtet werden. Atmosphärische Auflasten (= Luftdruck), z.B. während einer Hochdruckwetterlage, deformieren die quasi elastisch reagierende Erde um bis zu zwei Zentimeter und verändern auch die Erdanziehung. Entsprechend müssen Beobachtungen des Erdschwerefeldes, die z.B. mit speziellen Satellitenmissionen durchgeführt werden, wegen atmosphärischer Effekte korrigiert werden. Schließlich werden auch kleine, aber messbare Schwankungen der Erdrotation, die sich durch die Polbewegung und Veränderungen der Länge eines Tages ausdrücken, zu einem beträchtlichen Teil durch Prozesse in der Atmosphäre verursacht.

Weltumspannende Beobachtung und Vernetzung

Die Atmosphäre spielt daher eine entscheidende Rolle für die Entwicklung des "Global Geodetic Observing System (GGOS)" der International Association of Geodesy (IAG) mit seiner zentralen Thematik 'Globale Deformation und Massenverlagerungen im System Erde' zu erforschen. Innerhalb von GGOS, an dem weltweit Hunderte von GeowissenschafterInnen mitarbeiten, sollen die unterschiedlichen geodätischen und geophysikalischen Messungen integriert und kombiniert werden, die heutzutage auf der Erde oder vom Weltall aus durchgeführt werden. "Nur so lassen sich Schlussfolgerungen mit großer Relevanz für die Gesellschaft ziehen, wie z.B. Aussagen für die Klimaforschung oder die Vorhersage von Naturkatastrophen", erklärt TU-Forscher Johannes Böhm.

Wichtige Voraussetzung dieses weltweiten geowissenschaftlichen Beobachtungssystems sind dabei präzise globale Referenzrahmen. Nur wenn ein stabiles, extrem genaues und weltweites Netz von Festpunkten vorliegt, können langsame Veränderungen auf der Erde, wie z.B. die Bewegung der Kontinentalplatten oder Meeresspiegelvariationen exakt bestimmt werden.

Wetterdaten für geodynamische Parameter

Die zentrale Aufgabe des Projektes "GGOS Atmosphäre" ist es, konsistente und homogene Modelle für (1) atmosphärische Auflasteffekte, (2) atmosphärische Drehimpulsfunktionen und (3) Koeffizienten des Gravitationspotentiales der Atmosphäre aus einem gemeinsamen Datensatz zu berechnen. Und das jeweils mit denselben meteorologischen Größen wie Luftdruck, Temperatur, Luftfeuchtigkeit und Windgeschwindigkeit. Verwendet werden dabei Daten des European Centre for Medium-Range Weather Forecasts (ECMWF) mit der höchstmöglichen räumlichen und zeitlichen Auflösung.

Die Einflüsse von verschiedenen Datenklassen des ECMWF sowie der unterschiedlichen geophysikalischen Modelle auf die drei oben beschriebenen Phänomene werden untersucht. Sobald die am besten geeigneten Klassen und Modelle gefunden sind, werden am Institut für Geodäsie und Geophysik die Auflasteffekte, Drehimpulsfunktionen, und Koeffizienten des Gravitationspotentiales der Atmosphäre umfassend für den gesamten Zeitraum der vorliegenden weltraumgeodätischen Beobachtungen berechnet und der internationalen Wissenschaftsgemeinschaft zur Verfügung gestellt. Die Erkenntnisse aus dem Forschungsprojekt erhöhen das Verständnis des Systems Erde. Dieses beruht auf der fachübergreifenden Kenntnis der Wechselwirkungen zwischen den verschiedenen Komponenten der Erde (z.B. feste Erde, Ozeane, Atmosphäre) und der entsprechenden Veränderungen von Geometrie, Rotation und Schwerefeld der Erde.

Links:
Global Geodetic Observing System: http://www.ggos.org/
European Centre for Medium-Range Weather Forecasts: http://www.ecmwf.int/
International Association of Geodesy: http://www.iag-aig.org/
Rückfragehinweis:
Privatdoz. Dipl.-Ing. Dr.techn. Johannes Böhm
Technische Universität Wien
Institut für Geodäsie und Geophysik
Gußhausstraße 25-29, 1040 Wien
T: +43 (1) 58801 - 128 64
F: +43 (1) 58801 - 128 96
johannes.boehm@tuwien.ac.at

Werner Sommer | idw
Weitere Informationen:
http://www.tuwien.ac.at
http://info.tuwien.ac.at/hg/staff/johannes.boehm

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Der Salzwasser-Wächter auf der Darßer Schwelle
19.09.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Zeppelin, Drohnen und Forschungsschiffe untersuchen Wattenmeer und Elbe
19.09.2017 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik