Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erdbeben in Japan lässt KIT-Messgeräte ausschlagen

11.03.2011
Am 11 März um 6:46 Uhr deutscher Zeit, 14:46 Uhr Ortszeit, ereignete sich 100 Kilometer vor der japanischen Hauptinsel Honshu ein schweres Erdbeben, das nach derzeitigem Stand die Stärke 8,9 hatte.

Damit ist es das stärkste in der Geschichte Japans und das sechststärkste jemals gemessene Beben. Dabei hat sich auch in Karlsruhe der Boden vorübergehend um einen knappen Zentimeter verschoben – das zeigen aktuelle Messdaten des Geophysikalischen Instituts am KIT.


Bodenbewegungen in Karlsruhe – nach dem Beben in Japan. Abb. Geophysikalisches Institut

Der Forschungsbereich Seismologie untersucht die Tiefenstruktur des Mittleren Oberrheingrabens (Projekt TIMO) – die Messstationen sind etwa 10.000 Kilometer vom Epizentrum des Bebens in Japan entfernt. Die schnellste seismische Welle sei nach zwölf Minuten und 28 Sekunden in Karlsruhe eingetroffen, so Dr. Jörn Groos vom Geophysikalischen Institut. Die zweitschnellste folgte nach knapp 23 Minuten. „Bei den ersten beiden Erdbebenwellen handelt es sich um Raumwellen, die sich durch das Erdinnere ausbreiten.“

Danach trafen nach 35 Minuten sowie nach knapp 40 Minuten die langsameren Oberflächenwellen ein, die jedoch die stärkste Bodenverschiebung im Mittleren Oberrheingraben hervorgerufen haben. „Die gesamte Stadt Karlsruhe wurde dabei innerhalb von etwa 100 Sekunden um je neun Millimeter abgesenkt und angehoben sowie um neun Millimeter in Nord-Süd-Richtung und fünf Millimeter in Ost-West-Richtung vorübergehend verschoben.“

Erdbebenforscher unterscheiden verschiedene Wellentypen. Die erste oder Primärwelle (P-Welle) ist eine Druckwelle, die – wie beispielsweise auch der Schall – in Ausbreitungsrichtung schwingt. Die zweitschnellste Welle (Sekundärwelle, S-Welle) schwingt als Scherwelle quer zur Ausbreitungsrichtung. Die Bodenbewegung erfolgt auch aufgrund der Oberflächenwellen: in horizontaler Richtung durch Love-Wellen (benannt nach dem britischen Mathematiker A. E. H. Love), Rayleigh-Wellen (benannt nach dem englischen Physiker Lord Rayleigh) rufen sowohl horizontale als auch vertikale Bewegungen hervor.

Das Projekt TIMO misst und untersucht die globale und regionale Seismizität im Mittleren Oberrheingraben. Das Ziel ist die Charakterisierung der Erdbebentätigkeit im Oberrheingraben sowie der tiefen Struktur der Erdkruste und des Erdmantels.

Das Karlsruher Institut für Technologie (KIT) ist eine Körperschaft des öffentlichen Rechts und staatliche Einrichtung des Landes Baden-Württemberg. Es nimmt sowohl die Mission einer Universität als auch die Mission eines nationalen Forschungszentrums in der Helmholtz-Gemeinschaft wahr. Das KIT verfolgt seine Aufgaben im Wissensdreieck Forschung – Lehre – Innovation.

Weiterer Kontakt:
Margarete Lehné
Presse, Kommunikation und Marketing
Tel.: +49 721 608-48121
Fax: +49 721 608-45681
margarete.lehneWoe3∂kit.edu

Katrin Hecker | idw
Weitere Informationen:
http://www.kit.edu

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Der steile Aufstieg der Berner Alpen
24.03.2017 | Universität Bern

nachricht Internationales Team um Oldenburger Meeresforscher untersucht Meeresoberfläche
21.03.2017 | Carl von Ossietzky-Universität Oldenburg

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise