Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Entstehung von Nano-Tröpfchen auf der Spur

24.02.2012
Aerosol-Wolken-Klima-Wechselwirkungen stellen einen großen Unsicherheitsfaktor in der Klimamodellierung dar.

Ein Hauptgrund dafür sind die bislang wenig verstandenen Mechanismen, die zur spontanen Entstehung von atmosphärischen Aerosolteilchen und Wolkentröpfchen führen. Einem ForscherInnenteam der Universität Wien ist es nun gelungen, mittels quantitativer Experimente Einblicke in die Phasenumwandlung an einzelnen Molekülen zu gewinnen. Die neuen Erkenntnisse darüber, ab welcher Teilchengröße Tröpfchen makroskopische Eigenschaften aufweisen, publizieren sie aktuell in der Fachzeitschrift "Physical Review Letters".

Die Klimarelevanz von Aerosolen und Wolken im Allgemeinen, sowie deren überwiegend kühlende Wirkung im Speziellen sind wissenschaftlich unbestritten. "Für die Klimamodellierung sind sie jedoch nach wie vor ein großer Unsicherheitsfaktor, weil die Entstehung atmosphärischer Aerosolteilchen noch weitgehend ungeklärt ist", sagt der Meteorologe Paul Winkler, Erstautor der soeben erschienenen Studie. Winkler studierte und forschte an der Universität Wien und ist derzeit am National Center for Atmospheric Research in Boulder, Colorado (USA) beschäftigt. An der Forschung beteiligt waren WissenschafterInnen der Universität Wien und Helsinki.

Prozess der Tröpfchenbildung analysiert

Wolkentropfen bilden sich typischerweise, wenn Aerosolpartikel als Kondensationskerne wirken und dann durch Kondensation zu Größen anwachsen, wo sie sichtbar werden und atmosphärische Eigenschaften wie etwa den Strahlungstransport beeinflussen. Die tatsächlichen Strahlungseigenschaften einer Wolke hängen dabei stark von der Teilchengröße und -dichte ab und stehen somit in direktem Zusammenhang mit dem Angebot an vorhandenen Kondensationskernen. Eine Hauptquelle dieser Wolkenkondensationskerne stellen Nanopartikel dar, die durch Nukleation (Keimbildung) in der Atmosphäre spontan aus der Gasphase gebildet werden. Im Lauf von mehreren Stunden bis zu einem Tag wachsen sie durch Anlagerung organischer Spurengase zu Größen im Bereich von ca. 100 nm an, wo sie schließlich zu einem Wolkentropfen aktiviert werden können.

Thermodynamische Modelle ermöglichen Vorhersage

Die Experimente in dieser Studie erklären erstmals quantitativ, wie einzelne Moleküle mit einer Größe von nur 1 nm als Kondensationskerne durch Nukleation aktiviert werden können, wodurch diese Moleküle sichtbar und somit detektierbar – also wahrnehmbar – werden. In den ersten Phasen dieses Prozesses bildet sich ein Cluster durch Nukleation an der Oberfläche des Kondensationskern-Moleküls. Wenn dieser Cluster eine kritische Größe erreicht hat, akkumulieren Gasmoleküle durch Kondensation und es bildet sich ein größerer flüssiger Tropfen.

Die Experimente zeigen, dass der neugebildete Cluster makroskopische Eigenschaften besitzt, auch wenn er aus nur ca. 50 Molekülen besteht. Dies entspricht einem kritischen Clusterdurchmesser von ca. 2.5 nm. "Die neuen Resultate weisen darauf hin, dass makroskopische, thermodynamische Modelle geeignet sind, die Bedingungen präzise vorherzusagen, die die Entstehung dieser Cluster mit Größen von nur wenigen Nanometern ermöglichen,", resümiert Paul Wagner, stellvertretender Gruppensprecher der Aerosolphysik und Umweltphysik der Universität Wien und ebenfalls Autor der Studie.

Technische Meisterleistung: Aerosolpartikel von 1nm gemessen

Neben diesen grundlegenden Erkenntnissen sind die Ergebnisse auch von großer technischer Bedeutung. Zur Untersuchung atmosphärischer Aerosolkonzentrationen sind Kondensationskernzähler weltweit verbreitet. "Bis vor kurzem ist man davon ausgegangen, dass Aerosolpartikel mit Durchmessern unter 3nm mit Kondensationskernzählern prinzipiell nicht beobachtbar sind. Die neue Studie zeigt erstmals auf, dass Kondensationskernzähler auch Nanoteilchen mit wesentlich kleineren Durchmessern detektieren können und daher auch experimentelle Untersuchungen in dem für die Entstehung atmosphärischer Aerosole entscheidenden Größenbereich um 1nm erlauben", fasst der Aerosolphysiker Paul Wagner die technische Neuerung zusammen.

Publikation
Physical Review Letters: Quantitative characterization of critical nanoclusters nucleated on large single molecules. P.M. Winkler, A. Vrtala, G. Steiner, D. Wimmer, H. Vehkamaeki, K.E.J. Lehtinen, G.P. Reischl, M. Kulmala, P.E. Wagner. 24. February 2012, (Vol.108, No.8). DOI: 10.1103/PhysRevLett.108.085701
Wissenschaftliche Kontakte
Ao. Univ.-Prof. Dr. Dr. h.c. Paul Wagner
stv. Gruppensprecher der Aerosolphysik und Umweltphysik
Universität Wien
1090 Wien, Boltzmanngasse 5
T +43-1-4277-511 74
M +43-664-602 77-511 74
paul.wagner@univie.ac.at
Dr. Paul Winkler
National Center for Atmospheric Research
Boulder, Colorado, USA
T +1-303-497-1461
pwinkler@ucar.edu
Rückfragehinweis
Mag. Veronika Schallhart
Öffentlichkeitsarbeit
Universität Wien
T +43-1-4277-175 30
M +43-664-602 77-175 30
veronika.schallhart@univie.ac.at

Veronika Schallhart | Universität Wien
Weitere Informationen:
http://www.univie.ac.at
http://link.aps.org/doi/10.1103/PhysRevLett.108.085701

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Eine detaillierte Waldkarte des blauen Planeten
26.09.2017 | Friedrich-Schiller-Universität Jena

nachricht In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste lichtgetriebene Stromquelle der Welt

Die Stromregelung ist eine der wichtigsten Komponenten moderner Elektronik, denn über schnell angesteuerte Elektronenströme werden Daten und Signale übertragen. Die Ansprüche an die Schnelligkeit der Datenübertragung wachsen dabei beständig. In eine ganz neue Dimension der schnellen Stromregelung sind nun Wissenschaftler der Lehrstühle für Laserphysik und Angewandte Physik an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) vorgedrungen. Ihnen ist es gelungen, im „Wundermaterial“ Graphen Elektronenströme innerhalb von einer Femtosekunde in die gewünschte Richtung zu lenken – eine Femtosekunde entspricht dabei dem millionsten Teil einer milliardstel Sekunde.

Der Trick: die Elektronen werden von einer einzigen Schwingung eines Lichtpulses angetrieben. Damit können sie den Vorgang um mehr als das Tausendfache im...

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Im Spannungsfeld von Biologie und Modellierung

26.09.2017 | Veranstaltungen

Archaeopteryx, Klimawandel und Zugvögel: Deutsche Ornithologen-Gesellschaft tagt an der Uni Halle

26.09.2017 | Veranstaltungen

Unsere Arbeitswelt von morgen – Polarisierendes Thema beim 7. Unternehmertag der HNEE

26.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Europas erste Testumgebung für selbstfahrende Züge entsteht im Burgenland

26.09.2017 | Verkehr Logistik

Nerven steuern die Bakterienbesiedlung des Körpers

26.09.2017 | Biowissenschaften Chemie

Mit künstlicher Intelligenz zum chemischen Fingerabdruck

26.09.2017 | Biowissenschaften Chemie