Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Entstehung von Nano-Tröpfchen auf der Spur

24.02.2012
Aerosol-Wolken-Klima-Wechselwirkungen stellen einen großen Unsicherheitsfaktor in der Klimamodellierung dar.

Ein Hauptgrund dafür sind die bislang wenig verstandenen Mechanismen, die zur spontanen Entstehung von atmosphärischen Aerosolteilchen und Wolkentröpfchen führen. Einem ForscherInnenteam der Universität Wien ist es nun gelungen, mittels quantitativer Experimente Einblicke in die Phasenumwandlung an einzelnen Molekülen zu gewinnen. Die neuen Erkenntnisse darüber, ab welcher Teilchengröße Tröpfchen makroskopische Eigenschaften aufweisen, publizieren sie aktuell in der Fachzeitschrift "Physical Review Letters".

Die Klimarelevanz von Aerosolen und Wolken im Allgemeinen, sowie deren überwiegend kühlende Wirkung im Speziellen sind wissenschaftlich unbestritten. "Für die Klimamodellierung sind sie jedoch nach wie vor ein großer Unsicherheitsfaktor, weil die Entstehung atmosphärischer Aerosolteilchen noch weitgehend ungeklärt ist", sagt der Meteorologe Paul Winkler, Erstautor der soeben erschienenen Studie. Winkler studierte und forschte an der Universität Wien und ist derzeit am National Center for Atmospheric Research in Boulder, Colorado (USA) beschäftigt. An der Forschung beteiligt waren WissenschafterInnen der Universität Wien und Helsinki.

Prozess der Tröpfchenbildung analysiert

Wolkentropfen bilden sich typischerweise, wenn Aerosolpartikel als Kondensationskerne wirken und dann durch Kondensation zu Größen anwachsen, wo sie sichtbar werden und atmosphärische Eigenschaften wie etwa den Strahlungstransport beeinflussen. Die tatsächlichen Strahlungseigenschaften einer Wolke hängen dabei stark von der Teilchengröße und -dichte ab und stehen somit in direktem Zusammenhang mit dem Angebot an vorhandenen Kondensationskernen. Eine Hauptquelle dieser Wolkenkondensationskerne stellen Nanopartikel dar, die durch Nukleation (Keimbildung) in der Atmosphäre spontan aus der Gasphase gebildet werden. Im Lauf von mehreren Stunden bis zu einem Tag wachsen sie durch Anlagerung organischer Spurengase zu Größen im Bereich von ca. 100 nm an, wo sie schließlich zu einem Wolkentropfen aktiviert werden können.

Thermodynamische Modelle ermöglichen Vorhersage

Die Experimente in dieser Studie erklären erstmals quantitativ, wie einzelne Moleküle mit einer Größe von nur 1 nm als Kondensationskerne durch Nukleation aktiviert werden können, wodurch diese Moleküle sichtbar und somit detektierbar – also wahrnehmbar – werden. In den ersten Phasen dieses Prozesses bildet sich ein Cluster durch Nukleation an der Oberfläche des Kondensationskern-Moleküls. Wenn dieser Cluster eine kritische Größe erreicht hat, akkumulieren Gasmoleküle durch Kondensation und es bildet sich ein größerer flüssiger Tropfen.

Die Experimente zeigen, dass der neugebildete Cluster makroskopische Eigenschaften besitzt, auch wenn er aus nur ca. 50 Molekülen besteht. Dies entspricht einem kritischen Clusterdurchmesser von ca. 2.5 nm. "Die neuen Resultate weisen darauf hin, dass makroskopische, thermodynamische Modelle geeignet sind, die Bedingungen präzise vorherzusagen, die die Entstehung dieser Cluster mit Größen von nur wenigen Nanometern ermöglichen,", resümiert Paul Wagner, stellvertretender Gruppensprecher der Aerosolphysik und Umweltphysik der Universität Wien und ebenfalls Autor der Studie.

Technische Meisterleistung: Aerosolpartikel von 1nm gemessen

Neben diesen grundlegenden Erkenntnissen sind die Ergebnisse auch von großer technischer Bedeutung. Zur Untersuchung atmosphärischer Aerosolkonzentrationen sind Kondensationskernzähler weltweit verbreitet. "Bis vor kurzem ist man davon ausgegangen, dass Aerosolpartikel mit Durchmessern unter 3nm mit Kondensationskernzählern prinzipiell nicht beobachtbar sind. Die neue Studie zeigt erstmals auf, dass Kondensationskernzähler auch Nanoteilchen mit wesentlich kleineren Durchmessern detektieren können und daher auch experimentelle Untersuchungen in dem für die Entstehung atmosphärischer Aerosole entscheidenden Größenbereich um 1nm erlauben", fasst der Aerosolphysiker Paul Wagner die technische Neuerung zusammen.

Publikation
Physical Review Letters: Quantitative characterization of critical nanoclusters nucleated on large single molecules. P.M. Winkler, A. Vrtala, G. Steiner, D. Wimmer, H. Vehkamaeki, K.E.J. Lehtinen, G.P. Reischl, M. Kulmala, P.E. Wagner. 24. February 2012, (Vol.108, No.8). DOI: 10.1103/PhysRevLett.108.085701
Wissenschaftliche Kontakte
Ao. Univ.-Prof. Dr. Dr. h.c. Paul Wagner
stv. Gruppensprecher der Aerosolphysik und Umweltphysik
Universität Wien
1090 Wien, Boltzmanngasse 5
T +43-1-4277-511 74
M +43-664-602 77-511 74
paul.wagner@univie.ac.at
Dr. Paul Winkler
National Center for Atmospheric Research
Boulder, Colorado, USA
T +1-303-497-1461
pwinkler@ucar.edu
Rückfragehinweis
Mag. Veronika Schallhart
Öffentlichkeitsarbeit
Universität Wien
T +43-1-4277-175 30
M +43-664-602 77-175 30
veronika.schallhart@univie.ac.at

Veronika Schallhart | Universität Wien
Weitere Informationen:
http://www.univie.ac.at
http://link.aps.org/doi/10.1103/PhysRevLett.108.085701

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Neues Forschungsspecial zu Meeren, Ozeanen und Gewässern
18.01.2017 | Hochschule für Angewandte Wissenschaften Hamburg

nachricht Wasser - der heimliche Treiber des Kohlenstoffkreislaufs?
17.01.2017 | Max-Planck-Institut für Biogeochemie

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Der erste Blick auf ein einzelnes Protein

18.01.2017 | Biowissenschaften Chemie

Das menschliche Hirn wächst länger und funktionsspezifischer als gedacht

18.01.2017 | Biowissenschaften Chemie

Zur Sicherheit: Rettungsautos unterbrechen Radio

18.01.2017 | Verkehr Logistik