Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Elektron auf der Waage

20.02.2014
Elektronen sind der Quantenkitt unserer Welt.

Ohne Elektronen gäbe es keine Chemie, und Licht könnte nicht mit Materie wechselwirken. Wären Elektronen nur etwas schwerer oder leichter als sie es sind, sähe die Welt radikal anders aus. Wie aber wiegt man ein Teilchen, das so winzig ist, dass es bis dato als punktförmig gilt?


Penningfalle als Elektronenwaage: Ein Magnetfeld zwingt ein fünfach positiv geladenes Kohlenstoffion auf eine Kreisbahn. Aus der Umlauffrequenz lässt sich die Masse des Elektrons ermitteln. Sven Sturm

Dieses Kunststück gelang nun einer Kooperation unter Beteiligung von Physikern des Max-Planck-Instituts für Kernphysik in Heidelberg. Sie „wog“ die Masse des Elektrons 13 Mal präziser als bisher bekannt. Da die Elektronenmasse in fundamentalen Naturkonstanten steckt, ist das für die Grundlagenphysik wichtig.

„Normalerweise muss man in der Präzisionsphysik zehn, zwanzig Jahre forschen, um einen fundamentalen Wert um eine Größenordnung zu verbessern“, sagt Klaus Blaum. Mit Freude berichtet der Direktor am Max-Planck-Institut für Kernphysik in Heidelberg von der „enormen Reaktion“, die das jüngste Resultat auf wissenschaftlichen Tagungen hervorruft.

In nur wenigen Jahren hat es eine Forschungskooperation um die Heidelberger geschafft, den Wert der Masse eines Elektrons um einen Faktor 13 genauer zu bestimmen. Die extrem große Empfindlichkeit der dazu verwendeten „Waage“ veranschaulicht der Projektleiter Sven Sturm so: „Umgerechnet auf einen Airbus A-380 könnten wir allein durch Wiegen feststellen, ob eine Mücke als blinder Passagier an Bord ist.“

Dass Physiker die Masse des Elektrons nun auf elf Stellen hinter dem Komma genau kennen, ist wichtig, weil Elektronen praktisch überall mitmischen. Selbst zum Lesen dieses Texts müssen in den Augen Elektronen Licht in Nervenimpulse umwandeln. Diese ultrawinzigen Teilchen, die nach heutigem Wissen keinerlei Ausdehnung besitzen, stellen also eine ungeheure Macht in der Natur dar. Mit ihrer Masse hängt unter anderem der Wert fundamentaler Naturkonstanten zusammen. Dazu zählt beispielsweise die sogenannte Feinstrukturkonstante: Diese Konstante bestimmt die Form und die Eigenschaften von Atomen und Molekülen. „Sie beschreibt im Grunde alles, was wir sehen“, sagt Blaum, „denn sie spielt in der Wechselwirkung zwischen Licht und Materie eine zentrale Rolle.“ Hätte die Natur den Elektronen eine nur etwas andere Masse verpasst, würden die Atome ganz anders aussehen. Eine solche Welt wäre wohl sehr fremdartig.

Die Masse des Elektrons wird zusammen mit einem Kohlenstoffkern gemessen

Die Masse des Elektrons fließt zudem als eine zentrale Größe in das sogenannte Standardmodell der Physik ein. Dieses Modell beschreibt drei der vier heute bekannten Grundkräfte der Physik. Obwohl es beeindruckend gut funktioniert, ist heute trotzdem klar, dass seine Gültigkeit begrenzt ist. Wo diese Grenzen des Standardmodells liegen, ist allerdings offen. Daher kann eine präzise Kenntnis der Elektronenmasse bei der Suche nach bisher unbekannten physikalischen Zusammenhängen entscheidend mithelfen.

Um die extrem kleine Masse des Elektrons zu bestimmen, entwickelten die Physiker um Klaus Blaum und Sven Sturm ein ausgeklügeltes Experiment. Grundsätzlich braucht man beim Wiegen eine Referenz zum Vergleich. „Wenn man sich morgens auf die Waage stellt, ist das bei den alten mechanischen Modellen eine Feder“, erklärt Blaum. Balkenwaagen haben ein Gegengewicht als Referenz. Beim Elektron standen die Physiker vor dem Problem, dass alle sinnvoll als Referenzgewichte einsetzbaren Elementarteilchen viel schwerer sind. „Das Proton oder das Neutron zum Beispiel ist zweitausend Mal schwerer“, erklärt Blaum, „das wäre als wenn man ein Kaninchen mit einem Elefanten als Gegengewicht wiegen wollte.“ Bei ihrem Experiment entschieden die Physiker sich deshalb für einen Trick. Sie brachten zwar zwei höchst ungleiche Massen zusammen, versuchten aber erst gar nicht, das Kaninchen Elektron mit Hilfe eines atomaren Elefanten direkt zu wiegen.

Das Experiment hat Sven Sturm als Blaums Doktorand an der Universität Mainz aufgebaut. „Die Hauptherausforderung war die Entwicklung der Messmethode“, sagt er. Als Postdoktorand leitet er im Anschluss das Team, das die präzise Messung der Elektronenmasse durchführte. Die Physiker paarten dabei ein einzelnes Elektron mit einem nackten Kern des ungleich schwereren Kohlenstoff (C)-12-Isotops. Dieses Kohlenstoffisotop ist mit Bedacht ausgewählt, denn es legt die sogenannte atomare Masseneinheit fest. Damit ist die Masse von C-12 per Definition exakt bekannt, und ihr Einsatz als Referenz schließt eine wichtige Fehlerquelle aus. „Die Kontrolle der systematischen Fehler ist ganz entscheidend“, betont Sturm.

Eine Penning-Falle zwingt das Kohlenstoffion auf einen Rennkurs

Um den C-12-Kern mit dem einzigen Elektron zu präparieren, schossen die Physiker dem Kohlenstoffatom fünf seiner sechs Elektronen weg. Das übrig gebliebene fünffach geladene Kohlenstoffion – der Kohlenstoffkern mit einem einzigen Elektron – schickten sie auf einen Rennkurs, den man sich stark vereinfacht als kreisförmig vorstellen kann. Eine sogenannte Penning-Falle zwingt mit ihrem extrem gleichmäßigen Magnetfeld das Kohlenstoffion auf diese Kreisbahn.

„Bei Präzisionsmessungen strebt man immer an, die Messgröße genau mitzählbar zu machen“, erklärt Blaum den Hintergedanken: „Bei einem Formel-1-Rennen auf einem Rundkurs können Zuschauer mitzählen, wie oft ein Rennwagen vorbei rast, und mit Hilfe der Streckenlänge daraus seine Geschwindigkeit abschätzen.“ So ähnlich funktioniert das in der Penning-Falle, wobei die Physiker in diesem Fall auch kleinste Bruchteile ganzer Umläufe messen konnten.

Beim zweiten Schritt, der nun zur Ermittlung der Elektronenmasse nötig war, hilft die Quantenmechanik. Elektronen besitzen einen „Spin“, und dieser macht sie zu einem winzigen Magneten. Im starken Magnetfeld einer Penning-Falle macht dieser Spin wie ein winziger Kreisel eine Präzessionsbewegung. Diese ist zwar extrem schnell, aber die Physiker konnten sie mit Tricks präzise erfassen. Entscheidend dabei ist: Die Umlauffrequenz des Kohlenstoffions in der Falle und die Wackelfrequenz der Elektronenpräzession stehen in einem exakten Verhältnis. Wie ein Räderwerk verknüpft die Quantenmechanik auf diese Weise die Masse des Kohlenstoffions fest mit der Masse des Elektrons, die dadurch messbar wird.

Nur ein theoretischer Beitrag ermöglichte die Messung der Elektronemasse

Allerdings gab es in diesem Räderwerk ein bislang nicht allzu gut bekanntes „Zahnrad“. In der Physik heißt es g-Faktor oder gyromagnetischer Faktor. „Hier war die enge Zusammenarbeit mit Christoph Keitels Theoriegruppe an unserem Institut entscheidend“, erklärt Blaum. Basierend auf vorangegangenen Ergebnissen derselben Kollaboration konnten die Heidelberger Theoretiker um Gruppenleiter Zoltan Harman den g-Faktor genauer als je zuvor berechnen. Damit ermöglichten sie es, die Elektronenmasse exakt zu bestimmen.

Solche Präzisionsexperimente profitieren von Kooperationen mit Wissenschaftlern, die unterschiedliche Expertise einbringen. Physiker vom GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt und der Johannes Gutenberg-Universität Mainz lieferten wichtige Beiträge. Das Ergebnis ist eine ungeheuer präzise Zahl: Das Elektron wiegt demnach ein 1836,15267377stel der Protonenmasse. Will man seine Masse in Kilogramm umrechnen, kommt man auf unvorstellbare knapp 10-30 Kilogramm, also dreißig Nullen hinter dem Komma. Das Elektron ist wahrlich ein Leichtgewicht und spielt doch eine schwergewichtige Rolle in der Natur.

Peter Hergersberg | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de/7932718/elektron_masse

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur
22.06.2017 | Fraunhofer-Gesellschaft

nachricht Ursuppe in Dosen
21.06.2017 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Der Form eine Funktion verleihen

23.06.2017 | Informationstechnologie

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungsnachrichten

Rudolf-Virchow-Preis 2017 – wegweisende Forschung zu einer seltenen Form des Hodgkin-Lymphoms

23.06.2017 | Förderungen Preise