Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eisen hält den Dynamo im Erdkern am Laufen

02.06.2016

Das Magnetfeld der Erde existiert seit mindestens 3,4 Milliarden Jahren auch dank der niedrigen Wärmeleitfähigkeit von Eisen im Kern unseres Planeten. Das ist das Ergebnis der ersten direkten Messung der Eisen-Wärmeleitfähigkeit bei Drücken und Temperaturen, die den Bedingungen im Erdkern entsprechen. DESY-Forscherin Zuzana Konôpková und ihre Kollegen stellen diese Untersuchung im Fachblatt „Nature“ vor. Die Messergebnisse könnten eine kürzlich aufgeflammte Debatte über das sogenannte Geodynamo-Paradoxon beenden.

Der Geodynamo, der das Erdmagnetfeld erzeugt, speist sich aus der Konvektion im äußeren Erdkern, die das flüssige, elektrisch leitfähige und eisenreiche Material dort umwälzt wie kochendes Wasser in einem Topf. Kombiniert mit der Erdrotation entsteht ein Dynamoeffekt, aus dem wiederum das Erdmagnetfeld resultiert.


Querschnitt durch die Erde, kombiniert mit den Feldlinien des Erdmagnetfelds (simuliert vom Glatzmaier-Roberts-Geodynamo-Modell).

Montage: DESY

„Das Erdmagnetfeld schirmt uns von gefährlichen energiereichen Teilchen aus dem All ab, der sogenannten kosmischen Strahlung. Seine Existenz ist einer der Faktoren, die unseren Planeten bewohnbar machen“, erläutert Konôpková. „Daher waren wir an der Wärmeleitfähigkeit von Eisen interessiert, um das Energiebudget des Erdkerns zum Betrieb des Dynamos zu bestimmen“, erläutert die Physikerin. „Die Erzeugung und Erhaltung des Magnetfelds unseres Planeten hängt stark von der Wärme-Dynamik im Kern ab.“

Die Stärke der Konvektion im äußeren Erdkern hängt vom Wärmetransfer aus dem Kern in den Erdmantel ab sowie von der Wärmeleitfähigkeit des Eisens im äußeren Erdkern. Je mehr Wärme im äußeren Erdkern über direkte Wärmeleitung transportiert wird, desto weniger Energie steht zur Verfügung, um die Konvektion – und damit den Geodynamo – am Laufen zu halten.

Eine niedrige Wärmeleitfähigkeit bewirkt dagegen eine stärkere Konvektion und erhöht damit die Chance für einen funktionierenden Dynamo. Die Bestimmung der Wärmeleitfähigkeit unter den Bedingungen, die denen im Erdkern ähneln, hat sich in der Vergangenheit allerdings als schwierig erwiesen. Neuere theoretische Berechnungen lieferten eine vergleichsweise hohe Wärmeleitfähigkeit von bis zu 150 Watt pro Meter pro Kelvin (150 W/m/K) für Eisen im Erdkern.

Eine derart hohe Wärmeleitfähigkeit würde jedoch die Chancen verringern, dass der Dynamoeffekt frühzeitig einsetzt. Numerischen Modellrechnungen zufolge hätte der Geodynamo bei einer derart hohen Wärmeleitfähigkeit von Eisen erst relativ kürzlich in der Erdgeschichte entstehen dürfen, vor etwa einer Milliarde Jahren.

Die Existenz des Erdmagnetfelds lässt sich jedoch anhand von altem Gestein mindestens 3,4 Milliarden Jahre zurückverfolgen. „Es gibt eine heftige Debatte unter Geophysikern, denn mit so einer hohen Wärmeleitfähigkeit wird es schwer, die Geschichte des Erdmagnetfelds zu erklären, die sich aus urzeitlichem Gestein ablesen lässt“, sagt Konôpková.

Die DESY-Physikerin und ihre Kollegen Stewart McWilliams und Natalia Gómez-Pérez von der Universität Edinburgh sowie Alexander Goncharov von der Carnegie-Institution in Washington nutzten eine spezielle Hochdruckzelle, in der sich Proben nicht nur zwischen zwei Diamantstempeln stark zusammenpressen, sondern gleichzeitig mit zwei Infrarotlasern stark aufheizen lassen. Auf diese Weise konnten sie die Eisen-Wärmeleitfähigkeit bei hohen Temperaturen und hohen Drücken direkt bestimmen.

„Wir haben eine dünne Eisenfolie in der Diamantstempelzelle mit einem Druck von 130 Gigapascal zusammengepresst, das ist über eine Million Mal so hoch wie der Atmosphärendruck und entspricht ungefähr dem Druck an der Grenze von Erdmantel und Erdkern“, erläutert Konôpková.

„Gleichzeitig haben wir die Folie mit zwei Infrarotlasern durch die Diamanten auf bis zu 2700 Grad Celsius aufgeheizt. Dann haben wir mit einem dritten Laser einen schwachen Puls auf eine Seite der Folie geschossen, der eine thermische Störung ausgelöst hat. Die folgende Temperaturentwicklung haben wir schließlich von beiden Seiten der Folie mit einer optischen Streifenkamera beobachtet.“ So konnten die Wissenschaftler die Wanderung des Wärmepulses durch das Eisen verfolgen.

Diese Messungen fanden bei verschiedenen Drücken und Temperaturen statt – zum einen, um unterschiedliche Bedingungen im Inneren von Planeten abzudecken, zum anderen, um eine systematische Untersuchung der Wärmeleitfähigkeit als Funktion von Druck und Temperatur zu gewährleisten.

„Unsere Ergebnisse widersprechen den theoretischen Berechnungen deutlich“, berichtet Konôpková. „Wir haben sehr niedrige Werte von 18 bis 44 Watt pro Meter pro Kelvin für die Wärmeleitfähigkeit gemessen, wodurch sich das Paradox auflösen und der Geodynamo seit der Frühzeit der Erde funktionstüchtig sein kann.“

Das Deutsche Elektronen-Synchrotron DESY ist das führende deutsche Beschleunigerzentrum und eines der führenden weltweit. DESY ist Mitglied der Helmholtz-Gemeinschaft und wird zu 90 Prozent vom BMBF und zu 10 Prozent von den Ländern Hamburg und Brandenburg finanziert. An seinen Standorten in Hamburg und Zeuthen bei Berlin entwickelt, baut und betreibt DESY große Teilchenbeschleuniger und erforscht damit die Struktur der Materie. Die Kombination von Forschung mit Photonen und Teilchenphysik bei DESY ist einmalig in Europa.


Originalveröffentlichung
Direct measurement of thermal conductivity in solid iron at planetary core conditions; Zuzana Konôpková, R. Stewart McWilliams, Natalia Gómez-Pérez, Alexander F. Goncharov
„Nature”, 2016; DOI: 10.1038/nature18009

Dr. Thomas Zoufal | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.desy.de/

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Stagnation im tiefen Südpazifik erklärt natürliche CO2-Schwankungen
23.02.2018 | Carl von Ossietzky-Universität Oldenburg

nachricht Birgt Mikroplastik zusätzliche Gefahren durch Besiedlung mit schädlichen Bakterien?
21.02.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics