Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eisen hält den Dynamo im Erdkern am Laufen

02.06.2016

Das Magnetfeld der Erde existiert seit mindestens 3,4 Milliarden Jahren auch dank der niedrigen Wärmeleitfähigkeit von Eisen im Kern unseres Planeten. Das ist das Ergebnis der ersten direkten Messung der Eisen-Wärmeleitfähigkeit bei Drücken und Temperaturen, die den Bedingungen im Erdkern entsprechen. DESY-Forscherin Zuzana Konôpková und ihre Kollegen stellen diese Untersuchung im Fachblatt „Nature“ vor. Die Messergebnisse könnten eine kürzlich aufgeflammte Debatte über das sogenannte Geodynamo-Paradoxon beenden.

Der Geodynamo, der das Erdmagnetfeld erzeugt, speist sich aus der Konvektion im äußeren Erdkern, die das flüssige, elektrisch leitfähige und eisenreiche Material dort umwälzt wie kochendes Wasser in einem Topf. Kombiniert mit der Erdrotation entsteht ein Dynamoeffekt, aus dem wiederum das Erdmagnetfeld resultiert.


Querschnitt durch die Erde, kombiniert mit den Feldlinien des Erdmagnetfelds (simuliert vom Glatzmaier-Roberts-Geodynamo-Modell).

Montage: DESY

„Das Erdmagnetfeld schirmt uns von gefährlichen energiereichen Teilchen aus dem All ab, der sogenannten kosmischen Strahlung. Seine Existenz ist einer der Faktoren, die unseren Planeten bewohnbar machen“, erläutert Konôpková. „Daher waren wir an der Wärmeleitfähigkeit von Eisen interessiert, um das Energiebudget des Erdkerns zum Betrieb des Dynamos zu bestimmen“, erläutert die Physikerin. „Die Erzeugung und Erhaltung des Magnetfelds unseres Planeten hängt stark von der Wärme-Dynamik im Kern ab.“

Die Stärke der Konvektion im äußeren Erdkern hängt vom Wärmetransfer aus dem Kern in den Erdmantel ab sowie von der Wärmeleitfähigkeit des Eisens im äußeren Erdkern. Je mehr Wärme im äußeren Erdkern über direkte Wärmeleitung transportiert wird, desto weniger Energie steht zur Verfügung, um die Konvektion – und damit den Geodynamo – am Laufen zu halten.

Eine niedrige Wärmeleitfähigkeit bewirkt dagegen eine stärkere Konvektion und erhöht damit die Chance für einen funktionierenden Dynamo. Die Bestimmung der Wärmeleitfähigkeit unter den Bedingungen, die denen im Erdkern ähneln, hat sich in der Vergangenheit allerdings als schwierig erwiesen. Neuere theoretische Berechnungen lieferten eine vergleichsweise hohe Wärmeleitfähigkeit von bis zu 150 Watt pro Meter pro Kelvin (150 W/m/K) für Eisen im Erdkern.

Eine derart hohe Wärmeleitfähigkeit würde jedoch die Chancen verringern, dass der Dynamoeffekt frühzeitig einsetzt. Numerischen Modellrechnungen zufolge hätte der Geodynamo bei einer derart hohen Wärmeleitfähigkeit von Eisen erst relativ kürzlich in der Erdgeschichte entstehen dürfen, vor etwa einer Milliarde Jahren.

Die Existenz des Erdmagnetfelds lässt sich jedoch anhand von altem Gestein mindestens 3,4 Milliarden Jahre zurückverfolgen. „Es gibt eine heftige Debatte unter Geophysikern, denn mit so einer hohen Wärmeleitfähigkeit wird es schwer, die Geschichte des Erdmagnetfelds zu erklären, die sich aus urzeitlichem Gestein ablesen lässt“, sagt Konôpková.

Die DESY-Physikerin und ihre Kollegen Stewart McWilliams und Natalia Gómez-Pérez von der Universität Edinburgh sowie Alexander Goncharov von der Carnegie-Institution in Washington nutzten eine spezielle Hochdruckzelle, in der sich Proben nicht nur zwischen zwei Diamantstempeln stark zusammenpressen, sondern gleichzeitig mit zwei Infrarotlasern stark aufheizen lassen. Auf diese Weise konnten sie die Eisen-Wärmeleitfähigkeit bei hohen Temperaturen und hohen Drücken direkt bestimmen.

„Wir haben eine dünne Eisenfolie in der Diamantstempelzelle mit einem Druck von 130 Gigapascal zusammengepresst, das ist über eine Million Mal so hoch wie der Atmosphärendruck und entspricht ungefähr dem Druck an der Grenze von Erdmantel und Erdkern“, erläutert Konôpková.

„Gleichzeitig haben wir die Folie mit zwei Infrarotlasern durch die Diamanten auf bis zu 2700 Grad Celsius aufgeheizt. Dann haben wir mit einem dritten Laser einen schwachen Puls auf eine Seite der Folie geschossen, der eine thermische Störung ausgelöst hat. Die folgende Temperaturentwicklung haben wir schließlich von beiden Seiten der Folie mit einer optischen Streifenkamera beobachtet.“ So konnten die Wissenschaftler die Wanderung des Wärmepulses durch das Eisen verfolgen.

Diese Messungen fanden bei verschiedenen Drücken und Temperaturen statt – zum einen, um unterschiedliche Bedingungen im Inneren von Planeten abzudecken, zum anderen, um eine systematische Untersuchung der Wärmeleitfähigkeit als Funktion von Druck und Temperatur zu gewährleisten.

„Unsere Ergebnisse widersprechen den theoretischen Berechnungen deutlich“, berichtet Konôpková. „Wir haben sehr niedrige Werte von 18 bis 44 Watt pro Meter pro Kelvin für die Wärmeleitfähigkeit gemessen, wodurch sich das Paradox auflösen und der Geodynamo seit der Frühzeit der Erde funktionstüchtig sein kann.“

Das Deutsche Elektronen-Synchrotron DESY ist das führende deutsche Beschleunigerzentrum und eines der führenden weltweit. DESY ist Mitglied der Helmholtz-Gemeinschaft und wird zu 90 Prozent vom BMBF und zu 10 Prozent von den Ländern Hamburg und Brandenburg finanziert. An seinen Standorten in Hamburg und Zeuthen bei Berlin entwickelt, baut und betreibt DESY große Teilchenbeschleuniger und erforscht damit die Struktur der Materie. Die Kombination von Forschung mit Photonen und Teilchenphysik bei DESY ist einmalig in Europa.


Originalveröffentlichung
Direct measurement of thermal conductivity in solid iron at planetary core conditions; Zuzana Konôpková, R. Stewart McWilliams, Natalia Gómez-Pérez, Alexander F. Goncharov
„Nature”, 2016; DOI: 10.1038/nature18009

Dr. Thomas Zoufal | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.desy.de/

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Wasser - der heimliche Treiber des Kohlenstoffkreislaufs?
17.01.2017 | Max-Planck-Institut für Biogeochemie

nachricht Was ist krebserregend am Erionit?
13.01.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Geothermie: Den Sommer im Winter ernten

18.01.2017 | Energie und Elektrotechnik

Kompositmaterial für die Wasseraufbereitung

18.01.2017 | Biowissenschaften Chemie

Brain-Computer-Interface: Wenn der Computer uns intuitiv versteht

18.01.2017 | Informationstechnologie