Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Dinosaurier-Federn im neuen Licht

24.10.2014

Warum trugen Dinosaurier ein Federkleid lange bevor der Urvogel Archaeopteryx erste Flugversuche unternahm?

Ein Forscherteam der Universitäten Bonn und Göttingen geht dieser Frage im Artikel „Beyond the Rainbow” nach, der nun im renommierten Fachjournal „Science“ erscheint. Die Urechsen verfügten offenbar über eine ausgeprägte Farbwahrnehmung, führen die Wissenschaftler aus.


Nahaufnahme des Kopfgefieders eines Kolibris (Aglaiocercus kingii): Das leuchtende Smaragdgrün entsteht als Folge von lichtbrechenden Nanostrukturen innerhalb dieser Federn.

Foto: Georg Oleschinski/Uni Bonn


Einen größeren Kontrast als zwischen Sperlingsvogel und Tyrannosaurus rex lässt sich kaum vorstellen. Trotzdem handelt es sich beim Glanznektarvogel (Cinnyris habessinicus) um einen Dinosaurier.

Foto: Georg Oleschinski/Uni Bonn

Ihre These: Die Evolution von Federn ermöglichte den Dinosauriern eine große Farbigkeit, die an Partnerwahl und Fortpflanzungserfolg maßgeblich beteiligt war. ACHTUNG SPERRFRIST: Nicht vor Donnerstag, 23. Oktober, 20 Uhr MESZ veröffentlichen!

Schon zu Zeiten des Evolutionsforschers Charles Darwin im 19. Jahrhundert wurde vermutet, dass Vögel und Dinosaurier nahe Verwandte sind. Gewissheit brachten aber erst über 130 Jahre später die zahlreichen Funde gefiederter Dinosaurier, vor allem aus chinesischen Lagerstätten.

Dank dieser Fossilien weiß man, dass die Vögel aus einem Zweig mittelgroßer Raubsaurier entstanden sind, den sogenannten Theropoden. Vertreter dieser zweibeinigen Fleischfresser sind Tyrannosaurus rex oder auch die aus dem Film „Jurassic Park“ bekannten Velociraptoren. Wie später die Vögel trugen auch diese Raubsaurier Federn – lange bevor der Urvogel Archaeopteryx sich in die Lüfte erhob. Warum war das so, obwohl diese Dinosaurier gar nicht fliegen konnten?

Das Farbsehen der Dinosaurier

„Bisher wurde die Evolution von Federn vor allem als Anpassung an das Fliegen oder die Warmblütigkeit betrachtet”, sagt Erstautorin Marie-Claire Koschowitz vom Steinmann-Institut für Geologie, Mineralogie und Paläontologie der Universität Bonn. „Mich hat keine dieser Ideen wirklich überzeugt. Es muss eine wichtige Eigenschaft geben, die Federn so einzigartig macht und dafür sorgte, dass sie sich rasant unter den Vorfahren unserer Vögel verbreiteten“, sagt Koschowitz.

Sie wurde im Farbsehen der Dinosaurier fündig. Über die Analyse der Verwandtschaftsverhältnisse der Dinosaurier mit den Reptilien und Vögeln schloss die Wissenschaftlerin, dass Dinosaurier nicht nur über drei Farbrezeptoren für Rot, Grün und Blau wie das menschliche Auge verfügt haben. Sie konnten wahrscheinlich ebenso wie ihre nächsten noch lebenden Verwandten, die Krokodile und Vögel, auch noch über einen zusätzlichen Rezeptortyp extrem kurzwelliges und ultraviolettes Licht sehen.

Für die meisten Tiere ist dadurch die Welt noch viel bunter als für den Menschen und andere Säugetiere. Säugetiere haben allgemein ein schlechtes oder kein Farbsehen, weil sie in der frühen Phase ihrer Entstehung überwiegend nachtaktiv lebten. Im Gegensatz dazu belegen zahlreiche Studien zum Sozialverhalten und zur Partnerwahl tagaktiver Reptilien und Vögel, dass durch Farben vermittelte Informationen hier einen enormen Einfluss auf den Fortpflanzungserfolg haben.

Federn ermöglichen optisch auffälligere Signale als Fell

Durch Fossilfunde von Dinosauriern weiß man, dass die Vorläufer der Federn Haaren ähnelten, vergleichbare dem Fell von Säugetieren. Sie schützten vor allem die kleineren Raubsaurier, aus denen die Vögel hervorgingen, vor dem übermäßigen Verlust von Körperwärme. Das Problem bei den haarähnlichen Urfedern und bei Fell ist aber, dass es kaum Farbigkeit erlaubt, sondern nur grobe Muster in Braun- und Gelbtönen sowie Schwarz und Weiß.

Große flache Federn lösten dieses Problem, indem sie gleichzeitig die Darstellung von Farben und die Wärmeisolation ermöglichen. Ihre breite Oberfläche, geformt aus verhakten Hornstrahlen, erlaubte eine konstante Lichtbrechung und in der Folge die Entstehung sogenannter Strukturfarben. Diese Lichtbrechung ist zwingend nötig, um Farben wie Blau, Grün, metallisches Schimmern oder auch Farben im UV-Bereich zu erzeugen. „Mit Federn lassen sich wesentlich auffälligere optische Signale senden, als dies mit Fell möglich wäre. Irisierende Paradiesvögel und Kolobris sind hier nur zwei von unzähligen Beispielen“, sagt Koschowitz.

Die Evolution der Federn erscheint so in neuem Licht: Sie ermöglichen ein nahezu unendliches Spektrum an Farben und Mustern und zugleich die nötige Wärmeisolation. „Das erlaubte den Dinosauriern, mit ihrem bunten Federkleid zu prahlen, aber gleichzeitig warmblütig zu sein - etwas, was die Säugetiere nicht geschafft haben“, fasst Prof. Dr. Martin Sander vom Steinmann-Institut der Universität Bonn zusammen.

Publikation: Beyond the rainbow, Fachjournal „Science“, DOI: 10.1126/science.1258957

Kontakt für die Medien:

Marie-Claire Koschowitz
Steinmann-Institut für Geologie,
Mineralogie und Paläontologie
der Universität Bonn
Tel. 0228/731786
E-Mail: m.koschowitz@uni-bonn.de

Johannes Seiler | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-bonn.de/

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur
22.06.2017 | Fraunhofer-Gesellschaft

nachricht Ursuppe in Dosen
21.06.2017 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften