Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der perfekte Sonnensturm

28.09.2016

Ein geomagnetischer Sturm hat sich als Glücksfall für die Wissenschaft erwiesen. Jahrzehnte rätselte die Forschung, wie hoch energetische Partikel, die auf die Magnetosphäre der Erde treffen, wieder verschwinden. Jetzt hat Yuri Shprits vom Deutschen GeoForschungsZentrum GFZ und der Universität Potsdam mit einem internationalen Team eine Erklärung gefunden: Entscheidend für den Verlust an Teilchen ist, wie schnell die Partikel sind. Shprits: „Das hilft uns auch, Prozesse auf der Sonne, auf anderen Planeten und sogar in fernen Galaxien zu verstehen.“ Er fügt hinzu: „Die Studie wird uns überdies helfen, das ‚Weltraumwetter‘ besser vorherzusagen und damit wertvolle Satelliten zu schützen.“

Ein geomagnetischer Sturm am 17. Januar 2013 hat sich als Glücksfall für die Wissenschaft erwiesen. Der Sonnensturm ermöglichte einzigartige Beobachtungen, die helfen, eine lang diskutierte Forschungsfrage zu lösen. Jahrzehnte rätselten Wissenschaftlerinnen und Wissenschaftler, auf welche Weise hoch energetische Partikel, die auf die Magnetosphäre der Erde treffen, wieder verschwinden.


Visualisierung der magnetischen Umgebung der Erde mit den magnetischen Feldlinien als Schutzschild, der vom starken Magnetfeld im Erdkern gebildet wird. Näheres zum Bild am Ende der Pressemitteilung.

Abbildung: Martin Rother/GFZ

Als aussichtsreiche Erklärung galt ein Prozess, bei dem elektromagnetische Wellen die Teilchen in die Erdatmosphäre ablenkten. Vor zehn Jahren wurde eine weitere Theorie vorgeschlagen, wonach die Partikel in den interplanetaren Raum verschwanden.

Jetzt hat Yuri Shprits vom Deutschen GeoForschungsZentrum GFZ und der Universität Potsdam gemeinsam mit Kolleginnen und Kollegen aus Instituten weltweit herausgefunden, dass beide Erklärungen gelten – entscheidend für den Verlust an Teilchen ist, wie schnell die Partikel sind. Shprits sagt, dass damit einige grundlegende wissenschaftliche Fragen zu unserer nächsten Umgebung im Weltall gelöst werden.

„Das hilft uns auch, Prozesse auf der Sonne, auf anderen Planeten und sogar in fernen Galaxien zu verstehen“, sagt der Forscher. Er fügt hinzu: „Die Studie wird uns überdies helfen, das ‚Weltraumwetter‘ besser vorherzusagen und damit wertvolle Satelliten zu schützen.“ Die Arbeit erscheint in Nature Communications am Mittwoch, 28. September 2016.

Der Physiker James Van Allen wies vor beinahe sechzig Jahren nach, dass das Weltall radioaktiv ist. Er nutzte dazu Messungen eines Geigerzählers, der auf dem ersten US-amerikanischen Satelliten Explorer 1 angebracht war. Heute wissen wir, dass die Erde von zwei Ringen umgeben ist, die hoch energetische Teilchen aus dem Weltall „einfangen“.

Man spricht auch vom „Van-Allen-Gürtel“. Die Strahlung darin stellt eine extrem harsche Umgebung dar für Satelliten und Menschen dar, die in Raumfahrzeugen die Gürtel durchfliegen. Die Satelliten, auf denen unsere Navigationssysteme beruhen, z.B. die GPS Satelliten, befinden sich mitten im Van-Allen-Gürtel.

Die gefährlichsten Partikel für die Raumfahrt sind so genannte relativistische und ultra-relativistische Elektronen. Die einen fliegen mit mehr als 90 Prozent der Lichtgeschwindigkeit, die anderen sogar mit mehr als 99 Prozent der Lichtgeschwindigkeit. Treffen sie auf elektronische Bauteile, können sie diese empfindlich beeinträchtigen oder sogar zerstören.

Gegen relativistische Teilchen lassen sich Satelliten abschirmen, aber gegen die ultra-relativistischen Teilchen gibt es so gut wie keinen Schutz. Yuri Shprits, der kürzlich im Rahmen der Helmholtz-Rekrutierungsinitiative von der University of California, Los Angeles (UCLA) ans GFZ kam und eine Professur an der Universität Potsdam innehat, sagt: „Umso wichtiger ist es, die Dynamik dieser Partikel zu verstehen.“

Das Problem dabei: Im Gegensatz zu den vergleichsweise trägen Veränderungen der Ozeane und der Atmosphäre auf der Erde kann sich der Strahlungsfluss in der Magnetosphäre innerhalb einer Stunde um den Faktor 1000 verändern. Am dramatischsten sind die „drop-outs“, die während geomagnetischer Stürme oder Sonneneruptionen vorkommen. Schon seit Ende der 1960-er Jahre versucht die Forschung zu ergründen, wohin Elektronen aus dem Van-Allen-Gürtel verschwinden. Das Verständnis dieses Prozesses ist zentral, um die radioaktive Umgebung zu charakterisieren und Veränderungen prognostizieren zu können. Fachleute sprechen von Weltraumwettervorhersage.

Eine der Theorien, die „drop-outs“ erklären, beruhte auf bestimmten elektromagnetischen Wellen (EMIC für Electromagnetic Ion Cyclotron Waves). Diese werden durch eindringende Ionen aus dem Magnetosphäreschweif verursacht, die schwerer und energiereicher als Elektronen sind. EMIC-Wellen können Elektronen in die Erdatmosphäre hinein ablenken und so aus dem Van-Allen-Gürtel entfernen.

Vor zehn Jahren schlug Yuri Shprits gemeinsam mit Kolleginnen und Kollegen einen anderen Mechanismus vor, wonach Elektronen nicht nach „unten“, sondern nach oben abgelenkt werden, also nicht in der Atmosphäre landen, sondern ins Weltall verschwinden. Messungen und Modellierungen schienen diesen Weg zu bestätigen, aber es blieb unklar, was genau bei geomagnetischen Stürmen passiert.

Jetzt scheint die Frage gelöst zu sein, nachdem ein internationales Team um Yuri Shprits Daten aus dem Sonnensturm vom 17. Januar 2013 ausgewertet und darüber hinaus mit Ergebnissen aus seinen Modellrechnungen verglichen hat. „Der Sturm bot ideale Bedingungen“, erläutert Shprits, „weil erstens noch Teilchen aus einem vorhergehenden Sturm nachweisbar waren, zweitens die ultra-relativistischen und die relativistischen Teilchenströme an unterschiedlichen Stellen auftraten und drittens die ultra-relativistischen Teilchen tief in der Magnetosphäre gefangen waren.“

Umfangreiche Messungen einer Satellitenmission, die 2012 von der NASA zur Untersuchung der Strahlungsgürtel gestartet wurde (Van-Allen-Probes), zeigten, dass EMIC-Wellen tatsächlich Teilchen in die Atmosphäre streuten. Allerdings betrifft das ausschließlich die superschnellen ultra-relativistischen Teilchen und nicht wie früher gedacht auch die relativistischen.

Bei den hohen Energien ist die Streuung durch Wellen besonders effektiv. Der andere von Yuri Shprits vorgeschlagene Mechanismus hat dagegen die etwas langsameren Teilchen, die relativistischen Elektronen, in den interplanetaren Raum abgelenkt. Damit sei nicht nur eine alte Forschungsfrage gelöst, sagt Shprits, sondern es böten sich nun bessere Möglichkeiten, Prozesse in unserem Strahlungsgürtel, aber auch um andere Planeten herum bis hin zu Sternen und fernen Galaxien zu verstehen.

„Unsere Ergebnisse werden auch helfen, das ‚Weltraumwetter‘ besser vorherzusagen und damit wertvolle Satelliten zu schützen.“ An der Studie waren auch zwei GFZ-Doktoranden beteiligt.

E r l ä u t e r u n g  z u r  G r a f i k :

Visualisierung der magnetischen Umgebung der Erde mit den magnetischen Feldlinien als eine Art Schutzschild, der vom starken Magnetfeld im Erdkern gebildet wird. Die Grafik zeigt die Magnetosphäre der Erde, die energetische Partikel in den Van-Allen-Strahlungsgürteln einfangen kann. Die Feldlinien sind als blaue Bänder visualisiert. Die aufgeschnittenen farbigen Ringe um die Erde zeigen die Zonen, in denen die energiereichsten Partikel fliegen. Die Visualisierung basiert auf den Ergebnissen des VERB-4D-Modells, das Nikita Aseev von der GFZ-Sektion 2.3 Erdmagnetfeld rechnete, und dem magnetischen Tsyganenko 89-Modell. Alle dargestellten Aspekte des Magnetfelds vom Erdkern bis zum All sind Gegenstand der Forschung in der GFZ-Sektion Erdmagnetfeld. Die Grafik erzeugte Martin Rother von der Sektion 2.3. Abb.: Martin Rother/GFZ

Originalarbeit:
Yuri Shprits et al.:“Wave-Induced Loss of Ultra-Relativistic Electrons in the Van Allen Radiation Belts” (Nature Communications, 10.1038/NCOMMS12883)

Josef Zens | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ
Weitere Informationen:
http://www.gfz-potsdam.de/

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht AWI-Forscher messen Rekordkonzentration von Mikroplastik im arktischen Meereis
25.04.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas
20.04.2018 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: Fraunhofer ISE und teamtechnik bringen leitfähiges Kleben für Siliciumsolarzellen zu Industriereife

Das Kleben der Zellverbinder von Hocheffizienz-Solarzellen im industriellen Maßstab ist laut dem Fraunhofer-Institut für Solare Energiesysteme ISE und dem Anlagenhersteller teamtechnik marktreif. Als Ergebnis des gemeinsamen Forschungsprojekts »KleVer« ist die Klebetechnologie inzwischen so weit ausgereift, dass sie als alternative Verschaltungstechnologie zum weit verbreiteten Weichlöten angewendet werden kann. Durch die im Vergleich zum Löten wesentlich niedrigeren Prozesstemperaturen können vor allem temperatursensitive Hocheffizienzzellen schonend und materialsparend verschaltet werden.

Dabei ist der Durchsatz in der industriellen Produktion nur geringfügig niedriger als beim Verlöten der Zellen. Die Zuverlässigkeit der Klebeverbindung wurde...

Im Focus: BAM@Hannover Messe: Innovatives 3D-Druckverfahren für die Raumfahrt

Auf der Hannover Messe 2018 präsentiert die Bundesanstalt für Materialforschung und -prüfung (BAM), wie Astronauten in Zukunft Werkzeug oder Ersatzteile per 3D-Druck in der Schwerelosigkeit selbst herstellen können. So können Gewicht und damit auch Transportkosten für Weltraummissionen deutlich reduziert werden. Besucherinnen und Besucher können das innovative additive Fertigungsverfahren auf der Messe live erleben.

Pulverbasierte additive Fertigung unter Schwerelosigkeit heißt das Projekt, bei dem ein Bauteil durch Aufbringen von Pulverschichten und selektivem...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: IWS-Ingenieure formen moderne Alu-Bauteile für zukünftige Flugzeuge

Mit Unterdruck zum Leichtbau-Flugzeug

Ingenieure des Fraunhofer-Instituts für Werkstoff- und Strahltechnik (IWS) in Dresden haben in Kooperation mit Industriepartnern ein innovatives Verfahren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Konferenz zur Marktentwicklung von Gigabitnetzen in Deutschland

26.04.2018 | Veranstaltungen

infernum-Tag 2018: Digitalisierung und Nachhaltigkeit

24.04.2018 | Veranstaltungen

Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0

23.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Der lange Irrweg der ADP Ribosylierung

26.04.2018 | Biowissenschaften Chemie

Belle II misst die ersten Teilchenkollisionen

26.04.2018 | Physik Astronomie

Anzeichen einer Psychose zeigen sich in den Hirnwindungen

26.04.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics