Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der perfekte Sonnensturm

28.09.2016

Ein geomagnetischer Sturm hat sich als Glücksfall für die Wissenschaft erwiesen. Jahrzehnte rätselte die Forschung, wie hoch energetische Partikel, die auf die Magnetosphäre der Erde treffen, wieder verschwinden. Jetzt hat Yuri Shprits vom Deutschen GeoForschungsZentrum GFZ und der Universität Potsdam mit einem internationalen Team eine Erklärung gefunden: Entscheidend für den Verlust an Teilchen ist, wie schnell die Partikel sind. Shprits: „Das hilft uns auch, Prozesse auf der Sonne, auf anderen Planeten und sogar in fernen Galaxien zu verstehen.“ Er fügt hinzu: „Die Studie wird uns überdies helfen, das ‚Weltraumwetter‘ besser vorherzusagen und damit wertvolle Satelliten zu schützen.“

Ein geomagnetischer Sturm am 17. Januar 2013 hat sich als Glücksfall für die Wissenschaft erwiesen. Der Sonnensturm ermöglichte einzigartige Beobachtungen, die helfen, eine lang diskutierte Forschungsfrage zu lösen. Jahrzehnte rätselten Wissenschaftlerinnen und Wissenschaftler, auf welche Weise hoch energetische Partikel, die auf die Magnetosphäre der Erde treffen, wieder verschwinden.


Visualisierung der magnetischen Umgebung der Erde mit den magnetischen Feldlinien als Schutzschild, der vom starken Magnetfeld im Erdkern gebildet wird. Näheres zum Bild am Ende der Pressemitteilung.

Abbildung: Martin Rother/GFZ

Als aussichtsreiche Erklärung galt ein Prozess, bei dem elektromagnetische Wellen die Teilchen in die Erdatmosphäre ablenkten. Vor zehn Jahren wurde eine weitere Theorie vorgeschlagen, wonach die Partikel in den interplanetaren Raum verschwanden.

Jetzt hat Yuri Shprits vom Deutschen GeoForschungsZentrum GFZ und der Universität Potsdam gemeinsam mit Kolleginnen und Kollegen aus Instituten weltweit herausgefunden, dass beide Erklärungen gelten – entscheidend für den Verlust an Teilchen ist, wie schnell die Partikel sind. Shprits sagt, dass damit einige grundlegende wissenschaftliche Fragen zu unserer nächsten Umgebung im Weltall gelöst werden.

„Das hilft uns auch, Prozesse auf der Sonne, auf anderen Planeten und sogar in fernen Galaxien zu verstehen“, sagt der Forscher. Er fügt hinzu: „Die Studie wird uns überdies helfen, das ‚Weltraumwetter‘ besser vorherzusagen und damit wertvolle Satelliten zu schützen.“ Die Arbeit erscheint in Nature Communications am Mittwoch, 28. September 2016.

Der Physiker James Van Allen wies vor beinahe sechzig Jahren nach, dass das Weltall radioaktiv ist. Er nutzte dazu Messungen eines Geigerzählers, der auf dem ersten US-amerikanischen Satelliten Explorer 1 angebracht war. Heute wissen wir, dass die Erde von zwei Ringen umgeben ist, die hoch energetische Teilchen aus dem Weltall „einfangen“.

Man spricht auch vom „Van-Allen-Gürtel“. Die Strahlung darin stellt eine extrem harsche Umgebung dar für Satelliten und Menschen dar, die in Raumfahrzeugen die Gürtel durchfliegen. Die Satelliten, auf denen unsere Navigationssysteme beruhen, z.B. die GPS Satelliten, befinden sich mitten im Van-Allen-Gürtel.

Die gefährlichsten Partikel für die Raumfahrt sind so genannte relativistische und ultra-relativistische Elektronen. Die einen fliegen mit mehr als 90 Prozent der Lichtgeschwindigkeit, die anderen sogar mit mehr als 99 Prozent der Lichtgeschwindigkeit. Treffen sie auf elektronische Bauteile, können sie diese empfindlich beeinträchtigen oder sogar zerstören.

Gegen relativistische Teilchen lassen sich Satelliten abschirmen, aber gegen die ultra-relativistischen Teilchen gibt es so gut wie keinen Schutz. Yuri Shprits, der kürzlich im Rahmen der Helmholtz-Rekrutierungsinitiative von der University of California, Los Angeles (UCLA) ans GFZ kam und eine Professur an der Universität Potsdam innehat, sagt: „Umso wichtiger ist es, die Dynamik dieser Partikel zu verstehen.“

Das Problem dabei: Im Gegensatz zu den vergleichsweise trägen Veränderungen der Ozeane und der Atmosphäre auf der Erde kann sich der Strahlungsfluss in der Magnetosphäre innerhalb einer Stunde um den Faktor 1000 verändern. Am dramatischsten sind die „drop-outs“, die während geomagnetischer Stürme oder Sonneneruptionen vorkommen. Schon seit Ende der 1960-er Jahre versucht die Forschung zu ergründen, wohin Elektronen aus dem Van-Allen-Gürtel verschwinden. Das Verständnis dieses Prozesses ist zentral, um die radioaktive Umgebung zu charakterisieren und Veränderungen prognostizieren zu können. Fachleute sprechen von Weltraumwettervorhersage.

Eine der Theorien, die „drop-outs“ erklären, beruhte auf bestimmten elektromagnetischen Wellen (EMIC für Electromagnetic Ion Cyclotron Waves). Diese werden durch eindringende Ionen aus dem Magnetosphäreschweif verursacht, die schwerer und energiereicher als Elektronen sind. EMIC-Wellen können Elektronen in die Erdatmosphäre hinein ablenken und so aus dem Van-Allen-Gürtel entfernen.

Vor zehn Jahren schlug Yuri Shprits gemeinsam mit Kolleginnen und Kollegen einen anderen Mechanismus vor, wonach Elektronen nicht nach „unten“, sondern nach oben abgelenkt werden, also nicht in der Atmosphäre landen, sondern ins Weltall verschwinden. Messungen und Modellierungen schienen diesen Weg zu bestätigen, aber es blieb unklar, was genau bei geomagnetischen Stürmen passiert.

Jetzt scheint die Frage gelöst zu sein, nachdem ein internationales Team um Yuri Shprits Daten aus dem Sonnensturm vom 17. Januar 2013 ausgewertet und darüber hinaus mit Ergebnissen aus seinen Modellrechnungen verglichen hat. „Der Sturm bot ideale Bedingungen“, erläutert Shprits, „weil erstens noch Teilchen aus einem vorhergehenden Sturm nachweisbar waren, zweitens die ultra-relativistischen und die relativistischen Teilchenströme an unterschiedlichen Stellen auftraten und drittens die ultra-relativistischen Teilchen tief in der Magnetosphäre gefangen waren.“

Umfangreiche Messungen einer Satellitenmission, die 2012 von der NASA zur Untersuchung der Strahlungsgürtel gestartet wurde (Van-Allen-Probes), zeigten, dass EMIC-Wellen tatsächlich Teilchen in die Atmosphäre streuten. Allerdings betrifft das ausschließlich die superschnellen ultra-relativistischen Teilchen und nicht wie früher gedacht auch die relativistischen.

Bei den hohen Energien ist die Streuung durch Wellen besonders effektiv. Der andere von Yuri Shprits vorgeschlagene Mechanismus hat dagegen die etwas langsameren Teilchen, die relativistischen Elektronen, in den interplanetaren Raum abgelenkt. Damit sei nicht nur eine alte Forschungsfrage gelöst, sagt Shprits, sondern es böten sich nun bessere Möglichkeiten, Prozesse in unserem Strahlungsgürtel, aber auch um andere Planeten herum bis hin zu Sternen und fernen Galaxien zu verstehen.

„Unsere Ergebnisse werden auch helfen, das ‚Weltraumwetter‘ besser vorherzusagen und damit wertvolle Satelliten zu schützen.“ An der Studie waren auch zwei GFZ-Doktoranden beteiligt.

E r l ä u t e r u n g  z u r  G r a f i k :

Visualisierung der magnetischen Umgebung der Erde mit den magnetischen Feldlinien als eine Art Schutzschild, der vom starken Magnetfeld im Erdkern gebildet wird. Die Grafik zeigt die Magnetosphäre der Erde, die energetische Partikel in den Van-Allen-Strahlungsgürteln einfangen kann. Die Feldlinien sind als blaue Bänder visualisiert. Die aufgeschnittenen farbigen Ringe um die Erde zeigen die Zonen, in denen die energiereichsten Partikel fliegen. Die Visualisierung basiert auf den Ergebnissen des VERB-4D-Modells, das Nikita Aseev von der GFZ-Sektion 2.3 Erdmagnetfeld rechnete, und dem magnetischen Tsyganenko 89-Modell. Alle dargestellten Aspekte des Magnetfelds vom Erdkern bis zum All sind Gegenstand der Forschung in der GFZ-Sektion Erdmagnetfeld. Die Grafik erzeugte Martin Rother von der Sektion 2.3. Abb.: Martin Rother/GFZ

Originalarbeit:
Yuri Shprits et al.:“Wave-Induced Loss of Ultra-Relativistic Electrons in the Van Allen Radiation Belts” (Nature Communications, 10.1038/NCOMMS12883)

Josef Zens | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ
Weitere Informationen:
http://www.gfz-potsdam.de/

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Auf der Suche nach Hochtechnologiemetallen in Norddeutschland
26.06.2017 | Jacobs University Bremen gGmbH

nachricht Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur
22.06.2017 | Fraunhofer-Gesellschaft

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Future Security Conference 2017 in Nürnberg - Call for Papers bis 31. Juli

26.06.2017 | Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblick ins geschlossene Enzym

26.06.2017 | Biowissenschaften Chemie

Laser – World of Photonics: Offene und flexible Montageplattform für optische Systeme

26.06.2017 | Messenachrichten

Biophotonische Innovationen auf der LASER World of PHOTONICS 2017

26.06.2017 | Messenachrichten