Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der perfekte Sonnensturm

28.09.2016

Ein geomagnetischer Sturm hat sich als Glücksfall für die Wissenschaft erwiesen. Jahrzehnte rätselte die Forschung, wie hoch energetische Partikel, die auf die Magnetosphäre der Erde treffen, wieder verschwinden. Jetzt hat Yuri Shprits vom Deutschen GeoForschungsZentrum GFZ und der Universität Potsdam mit einem internationalen Team eine Erklärung gefunden: Entscheidend für den Verlust an Teilchen ist, wie schnell die Partikel sind. Shprits: „Das hilft uns auch, Prozesse auf der Sonne, auf anderen Planeten und sogar in fernen Galaxien zu verstehen.“ Er fügt hinzu: „Die Studie wird uns überdies helfen, das ‚Weltraumwetter‘ besser vorherzusagen und damit wertvolle Satelliten zu schützen.“

Ein geomagnetischer Sturm am 17. Januar 2013 hat sich als Glücksfall für die Wissenschaft erwiesen. Der Sonnensturm ermöglichte einzigartige Beobachtungen, die helfen, eine lang diskutierte Forschungsfrage zu lösen. Jahrzehnte rätselten Wissenschaftlerinnen und Wissenschaftler, auf welche Weise hoch energetische Partikel, die auf die Magnetosphäre der Erde treffen, wieder verschwinden.


Visualisierung der magnetischen Umgebung der Erde mit den magnetischen Feldlinien als Schutzschild, der vom starken Magnetfeld im Erdkern gebildet wird. Näheres zum Bild am Ende der Pressemitteilung.

Abbildung: Martin Rother/GFZ

Als aussichtsreiche Erklärung galt ein Prozess, bei dem elektromagnetische Wellen die Teilchen in die Erdatmosphäre ablenkten. Vor zehn Jahren wurde eine weitere Theorie vorgeschlagen, wonach die Partikel in den interplanetaren Raum verschwanden.

Jetzt hat Yuri Shprits vom Deutschen GeoForschungsZentrum GFZ und der Universität Potsdam gemeinsam mit Kolleginnen und Kollegen aus Instituten weltweit herausgefunden, dass beide Erklärungen gelten – entscheidend für den Verlust an Teilchen ist, wie schnell die Partikel sind. Shprits sagt, dass damit einige grundlegende wissenschaftliche Fragen zu unserer nächsten Umgebung im Weltall gelöst werden.

„Das hilft uns auch, Prozesse auf der Sonne, auf anderen Planeten und sogar in fernen Galaxien zu verstehen“, sagt der Forscher. Er fügt hinzu: „Die Studie wird uns überdies helfen, das ‚Weltraumwetter‘ besser vorherzusagen und damit wertvolle Satelliten zu schützen.“ Die Arbeit erscheint in Nature Communications am Mittwoch, 28. September 2016.

Der Physiker James Van Allen wies vor beinahe sechzig Jahren nach, dass das Weltall radioaktiv ist. Er nutzte dazu Messungen eines Geigerzählers, der auf dem ersten US-amerikanischen Satelliten Explorer 1 angebracht war. Heute wissen wir, dass die Erde von zwei Ringen umgeben ist, die hoch energetische Teilchen aus dem Weltall „einfangen“.

Man spricht auch vom „Van-Allen-Gürtel“. Die Strahlung darin stellt eine extrem harsche Umgebung dar für Satelliten und Menschen dar, die in Raumfahrzeugen die Gürtel durchfliegen. Die Satelliten, auf denen unsere Navigationssysteme beruhen, z.B. die GPS Satelliten, befinden sich mitten im Van-Allen-Gürtel.

Die gefährlichsten Partikel für die Raumfahrt sind so genannte relativistische und ultra-relativistische Elektronen. Die einen fliegen mit mehr als 90 Prozent der Lichtgeschwindigkeit, die anderen sogar mit mehr als 99 Prozent der Lichtgeschwindigkeit. Treffen sie auf elektronische Bauteile, können sie diese empfindlich beeinträchtigen oder sogar zerstören.

Gegen relativistische Teilchen lassen sich Satelliten abschirmen, aber gegen die ultra-relativistischen Teilchen gibt es so gut wie keinen Schutz. Yuri Shprits, der kürzlich im Rahmen der Helmholtz-Rekrutierungsinitiative von der University of California, Los Angeles (UCLA) ans GFZ kam und eine Professur an der Universität Potsdam innehat, sagt: „Umso wichtiger ist es, die Dynamik dieser Partikel zu verstehen.“

Das Problem dabei: Im Gegensatz zu den vergleichsweise trägen Veränderungen der Ozeane und der Atmosphäre auf der Erde kann sich der Strahlungsfluss in der Magnetosphäre innerhalb einer Stunde um den Faktor 1000 verändern. Am dramatischsten sind die „drop-outs“, die während geomagnetischer Stürme oder Sonneneruptionen vorkommen. Schon seit Ende der 1960-er Jahre versucht die Forschung zu ergründen, wohin Elektronen aus dem Van-Allen-Gürtel verschwinden. Das Verständnis dieses Prozesses ist zentral, um die radioaktive Umgebung zu charakterisieren und Veränderungen prognostizieren zu können. Fachleute sprechen von Weltraumwettervorhersage.

Eine der Theorien, die „drop-outs“ erklären, beruhte auf bestimmten elektromagnetischen Wellen (EMIC für Electromagnetic Ion Cyclotron Waves). Diese werden durch eindringende Ionen aus dem Magnetosphäreschweif verursacht, die schwerer und energiereicher als Elektronen sind. EMIC-Wellen können Elektronen in die Erdatmosphäre hinein ablenken und so aus dem Van-Allen-Gürtel entfernen.

Vor zehn Jahren schlug Yuri Shprits gemeinsam mit Kolleginnen und Kollegen einen anderen Mechanismus vor, wonach Elektronen nicht nach „unten“, sondern nach oben abgelenkt werden, also nicht in der Atmosphäre landen, sondern ins Weltall verschwinden. Messungen und Modellierungen schienen diesen Weg zu bestätigen, aber es blieb unklar, was genau bei geomagnetischen Stürmen passiert.

Jetzt scheint die Frage gelöst zu sein, nachdem ein internationales Team um Yuri Shprits Daten aus dem Sonnensturm vom 17. Januar 2013 ausgewertet und darüber hinaus mit Ergebnissen aus seinen Modellrechnungen verglichen hat. „Der Sturm bot ideale Bedingungen“, erläutert Shprits, „weil erstens noch Teilchen aus einem vorhergehenden Sturm nachweisbar waren, zweitens die ultra-relativistischen und die relativistischen Teilchenströme an unterschiedlichen Stellen auftraten und drittens die ultra-relativistischen Teilchen tief in der Magnetosphäre gefangen waren.“

Umfangreiche Messungen einer Satellitenmission, die 2012 von der NASA zur Untersuchung der Strahlungsgürtel gestartet wurde (Van-Allen-Probes), zeigten, dass EMIC-Wellen tatsächlich Teilchen in die Atmosphäre streuten. Allerdings betrifft das ausschließlich die superschnellen ultra-relativistischen Teilchen und nicht wie früher gedacht auch die relativistischen.

Bei den hohen Energien ist die Streuung durch Wellen besonders effektiv. Der andere von Yuri Shprits vorgeschlagene Mechanismus hat dagegen die etwas langsameren Teilchen, die relativistischen Elektronen, in den interplanetaren Raum abgelenkt. Damit sei nicht nur eine alte Forschungsfrage gelöst, sagt Shprits, sondern es böten sich nun bessere Möglichkeiten, Prozesse in unserem Strahlungsgürtel, aber auch um andere Planeten herum bis hin zu Sternen und fernen Galaxien zu verstehen.

„Unsere Ergebnisse werden auch helfen, das ‚Weltraumwetter‘ besser vorherzusagen und damit wertvolle Satelliten zu schützen.“ An der Studie waren auch zwei GFZ-Doktoranden beteiligt.

E r l ä u t e r u n g  z u r  G r a f i k :

Visualisierung der magnetischen Umgebung der Erde mit den magnetischen Feldlinien als eine Art Schutzschild, der vom starken Magnetfeld im Erdkern gebildet wird. Die Grafik zeigt die Magnetosphäre der Erde, die energetische Partikel in den Van-Allen-Strahlungsgürteln einfangen kann. Die Feldlinien sind als blaue Bänder visualisiert. Die aufgeschnittenen farbigen Ringe um die Erde zeigen die Zonen, in denen die energiereichsten Partikel fliegen. Die Visualisierung basiert auf den Ergebnissen des VERB-4D-Modells, das Nikita Aseev von der GFZ-Sektion 2.3 Erdmagnetfeld rechnete, und dem magnetischen Tsyganenko 89-Modell. Alle dargestellten Aspekte des Magnetfelds vom Erdkern bis zum All sind Gegenstand der Forschung in der GFZ-Sektion Erdmagnetfeld. Die Grafik erzeugte Martin Rother von der Sektion 2.3. Abb.: Martin Rother/GFZ

Originalarbeit:
Yuri Shprits et al.:“Wave-Induced Loss of Ultra-Relativistic Electrons in the Van Allen Radiation Belts” (Nature Communications, 10.1038/NCOMMS12883)

Josef Zens | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ
Weitere Informationen:
http://www.gfz-potsdam.de/

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen
26.04.2017 | Leibniz-Institut für Troposphärenforschung e. V.

nachricht Flechten aus dem Bernsteinwald
25.04.2017 | Georg-August-Universität Göttingen

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie