Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Leben an Land ist 300 Millionen Jahre älter als gedacht

07.11.2016

Das Leben auf der Erde hat den Sprung an Land bereits vor mindestens 3,2 Milliarden Jahren vollzogen, also 300 Millionen Jahre früher als bisher angenommen. Das legt eine Studie von Wissenschaftlern aus Berlin, Potsdam und Jena nahe, die kürzlich im Fachjournal “Geology” erschienen ist. Das Team um Sami Nabhan von der Freien Universität Berlin hat uralte Gesteinsformationen in Südafrika untersucht. An der Studie war Michael Wiedenbeck vom Deutschen GeoForschungsZentrum GFZ beteiligt.

Die Felsen des so genannten Barberton Greenstone Belt zählen zu den ältesten bekannten Gesteinen der Erde. Sie sind bis zu 3,5 Milliarden Jahren alt. In einer Schicht, die auf 3,22 Milliarden Jahre datiert wird, fanden die Forscher winzige Körnchen des Minerals Pyrit, ein Eisensulfid.


Der Barberton Greenstone Belt in Südafrika: Wo heute felsiges Grasland ist, floss vor 3,2 Milliarden Jahren ein verwilderter Fluss ("Zopfstrom"). In dessen Ebene lebten Bodenorganismen.

Foto: Sami Nabhan/FSU Jena

Die Körnchen weisen klare Anzeichen von Beeinflussung durch Mikroorganismen auf: dabei geht es um die Verteilung von Spurenelementen ebenso wie um das Verhältnis der Schwefelisotope 34S und 32S im Pyrit.

Im SIMS-Labor des Deutschen GeoForschungsZentrums GFZ wies Michael Wiedenbeck nach, dass der 34S-Anteil im Kern der Kristalle in charakteristischer Weise vom 34S-Anteil in deren Randzonen abweicht. Das wiederum deutet darauf hin, dass Mikroorganismen den Schwefel am Rand der Kristalle umgewandelt haben. Der Prozess heißt biogene Fraktionierung.

Das Kürzel SIMS steht für Sekundäre Ionenmassenspektrometrie. Das Gerät ist seit 2013 am GFZ in Betrieb und hat für die vorliegende Studie Proben analysiert, die weniger als ein Milliardstel Gramm wiegen.

Die Zusammensetzung des Gesteins, die Schichtung und die Form der Kristalle deuten alle darauf hin, dass die Felsen ihren Ursprung in einem alten Bodenprofil hatten. Dieser „Paläoboden“ entstand vor mehr als drei Milliarden Jahren in einer Flussebene eines so genannten Zopfstroms. Der Fluss transportierte Sedimente, welche die Eisensulfide enthielten, und lagerte sie in der Ebene ab.

Dort, so folgern die Forscher aus den Daten, lebten Mikroorganismen in einer Bodenzone, die abwechselnd feucht und trocken war, und verursachten die typischen Ränder an den Pyritkristallen. Damit, so die Forscher in „Geology“ seien Bodenlebewesen nachgewiesen, die vor mindestens 3,2 Milliarden Jahren außerhalb der Ozeane lebten. Das rückt den Sprung an Land durch das Leben um rund 300 Millionen Jahre weiter zurück als bisher bekannt.

Originalstudie: Sami Nabhan, Michael Wiedenbeck, Ralf Milke and Christoph Heubeck: Biogenic overgrowth on detrital pyrite in ca. 3.2 Ga Archean paleosols. In: Geology, vol. 44, No. 9 (DOI: 10.1130/G38090.1)

Josef Zens | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ
Weitere Informationen:
http://www.gfz-potsdam.de/

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Der Salzwasser-Wächter auf der Darßer Schwelle
19.09.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie