Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bremsen Staubpartikel die Klimaerwärmung?

01.10.2009
Meteorologen fordern, den Einfluss von Aerosolen auf die Wolkenbildung neu zu erforschen

Es klafft eine Wissenslücke in der Klimaforschung: Seit Jahrzehnten fragen sich Wissenschaftler, ob und wie stark menschengemachte Aerosole, also in der Atmosphäre schwebende Staubpartikel, die Wolkenbedeckung vergrößern und somit die Klimaerwärmung bremsen.


Jede Wolke ist verschieden. Deshalb ist es wichtig zu untersuchen, in welchen Wolkensystemen Aerosole den größten Einfluss haben. Bild: Max-Planck-Institut für Meteorologie / Stevens

Die Forschung kommt in dieser Frage kaum voran. Zwei Forscher vom Max-Planck-Institut für Meteorologie in Hamburg (MPI-M) und von der US-amerikanischen "National Oceanic and Atmospheric Administration" (NOAA) schreiben nun in der Fachzeitschrift Nature, dass das Wechselspiel zwischen Aerosolen, Wolken und Niederschlag stark von Einflüssen abhängt, die bislang zu wenig erforscht wurden. Sie fordern ein Forschungskonzept, um die Wissenslücke zu schließen. (Nature, 1. Oktober 2009)

Treibhausgase, welche die Erdatmosphäre erwärmen, haben Gegenspieler: Staubteilchen, die in der Lufthülle schweben, so genannte Aerosole. Sie entstehen auf natürliche Weise, etwa indem Winde Wüstenstaub aufwirbeln, aber auch durch menschliche Aktivitäten. Ein großer Teil der menschgemachten Aerosole entsteht aus Schwefeldioxiden, die wiederum aus der Verbrennung von fossilen Brennstoffen kommen.

Die Aerosole gelten als Klimakühler, die einen Teil der Erdwärmung durch die Treibhausgase wieder ausgleichen. Den Kühlmechanismus stellen sich Klimaforscher sehr einfach vor: Wenn Aerosole in Wolken gelangen, ziehen sie Wassermoleküle an sich und wirken so als Kondensationskeime für Wassertropfen. Je mehr Aerosol-Partikel in der Wolke schweben, desto mehr Wassertröpfchen entstehen. Wenn menschgemachte Staubteilchen zu den natürlichen kommen, vergrößert sich daher die Anzahl der Tröpfchen. Dadurch verkleinert sich die durchschnittliche Größe der Tröpfchen. Weil kleinere Tröpfchen nicht zu Boden fallen, verhindern die Aerosole das Abregnen einer Wolke und verlängern ihre Lebensdauer. Somit nimmt die Bewölkung über der Erdoberfläche zu. Da Wolken die Sonnenstrahlung reflektieren und ins All zurückwerfen, sammelt sich weniger Wärme in der Atmosphäre an als bei klarerem Himmel. Den Mechanismus bezeichnen Klimaforscher als "Cloud lifetime effect".

Doch bislang gelang es nicht, den Einfluss des "Cloud lifetime effect" auf das Klima zu quantifizieren. Die Schätzungen schwanken extrem: Die Skala reicht von gar keinem Einfluss bis hin zu einer Kühlwirkung, die ausreicht, um die Erwärmung durch Kohlendioxid mehr als auszugleichen.

Die große Unsicherheit weise darauf hin, dass die Erklärung des Kühlmechanismus durch Aerosole zu stark vereinfacht sei, schreiben Bjorn Stevens vom MPI-M und Graham Feingold vom Earth System Research Laboratory der NOAA in Washington D.C.. Die beiden Wolkenforscher haben die Fachliteratur, die seit den 1970er-Jahren zu zum Thema veröffentlicht wurde, analysiert. Dabei stießen sie auf Beobachtungen, die dem "Cloud lifetime effect" widersprechen. Beispielsweise fand eine vor wenigen Jahren durchgeführte Feldstudie, dass Wolken in der Passatwindregion bei Anwesenheit von wenig transparentem Aerosol schneller abregnen, statt langsamer.

Nach ihrer Literaturanalyse sind Stevens und Feingold zu folgendem Schluss gelangt: "Wolken regieren auf Aerosole auf sehr komplexe Weise und die Reaktion hängt stark von der Wolkenart und dem Wolkenzustand ab", sagt Stevens. Das Aerosol-Problem sei deshalb ein Wolken-Problem. "Wir Klimaforscher müssen uns stärker auf das Verständnis von Wolkensystemen konzentrieren", betont der Meteorologe.

Bislang seien Prozesse in den Wolken nicht berücksichtigt worden, die dem Einfluss der Aerosol-Partikel entgegenwirken oder ihn sogar aufheben, schreiben die Forscher. Ein Beispiel: Wenn eine Kumuluswolke mit Aerosolen in Kontakt kommt, regnet sie zwar zunächst nicht ab. Doch das hat Folgen: Die Flüssigkeit steigt nach oben und verdampft über der Wolke. Dabei kühlt sich die über der Wolke liegende Luft ab, wodurch sie empfänglich für eine Ausdehnung der Kumuluswolke nach oben wird. Höhere Kumuluswolken regnen leichter ab als niedrige. Deshalb kommt es nun doch zum Niederschlag. Das Aerosol verhindert in einem solchen Fall nicht das Abregnen der Wolke.

Stevens und Feingold glauben, dass die Kühlwirkung der Aerosole wegen solcher Puffermechanismen eher gering ist. Sie räumen aber ein, dass der "Cloud lifetime effect" nicht per se ungeeignet ist, die durch Aerosole ausgelösten Vorgänge in den Wolken zu erklären. "Es lassen sich eben nicht alle Wolkentypen und -zustände über einen Kamm scheren", sagt Stevens. Er fordert ein Umdenken in der Aerosol-Forschung und zieht einen Vergleich zur Krebsforschung: "Früher dachte man, es gebe einen Entstehungsmechanismus von Krebs. Heute weiß man, dass jede Krebsart für sich erforscht werden muss", sagt der Wissenschaftler.

Nach der Meinung von Stevens und Feingold müsse die Forschung zunächst herausfinden, in welchen Wolkensystemen Aerosole den größten Einfluss haben. Sie schlagen vor, mit besonders häufig vorkommenden Wolkenarten zu beginnen, etwa flache Kumulus-Wolken über den Ozeanen (Passatkumuli), die 40 Prozent der Weltmeere bedecken.

Ein Forschungsprojekt des Max-Planck-Institutes für Meteorologie und des Caribbean Institute for Meteorology and Hydrology in Miami soll hier einen Anfang machen. Die zweijährige empirische Feldstudie beginnt 2010 auf der in der Passatregion liegenden Karibikinsel Barbados. Auf deren windzugewandten Seite werden die Forscher Fernerkundungsinstrumente installieren, welche die vom offenen Ozean kommenden Wolken ins Visier nehmen. Ergänzt werden die Bodenmessungen durch Messungen in den Wolken selbst, die vom deutschen Forschungsflugzeug HALO vorgenommen werden. Die Daten aus der Messkampagne sollen helfen, die Beziehungen zwischen Wolkenbedeckung, Niederschlag, umgebenden meteorologischen Bedingungen und Aerosolen besser zu verstehen.

Originalpublikation
Bjorn Stevens, Graham Feingold
Untangling aerosol effects on clouds and precipitation in a buffered system
Nature, 1. Oktober 2009, Band 461, Seiten 607 - 613
Weitere Informationen erhalten Sie von:
Dr. Annette Kirk, Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Meteorologie
Tel. +49 40 41173 - 374
annette.kirk@zmaw.de
Prof. Dr. Bjorn Stevens
Max-Planck-Institut für Meteorologie
Tel: +49 40 41173 - 422
bjorn.stevens@zmaw.de

Dr. Felicitas von Aretin | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de
http://www.mpch-mainz.mpg.de/mpg/deutsch/pri0209.htm
http://www.mpimet.mpg.de/presse/pressemitteilungen/aerosole-wolken-niederschlag-und-klima-messkampgne-auf-barbados-geplant.html

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Grazer Forscher stellen Methode zur dreidimensionalen Charakterisierung vulkanischer Wolken vor
14.12.2017 | Karl-Franzens-Universität Graz

nachricht Rest-Spannung trotz Megabeben
13.12.2017 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunsystem - Blutplättchen können mehr als bislang bekannt

LMU-Mediziner zeigen eine wichtige Funktion von Blutplättchen auf: Sie bewegen sich aktiv und interagieren mit Erregern.

Die aktive Rolle von Blutplättchen bei der Immunabwehr wurde bislang unterschätzt: Sie übernehmen mehr Funktionen als bekannt war. Das zeigt eine Studie von...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Call for Contributions: Tagung „Lehren und Lernen mit digitalen Medien“

15.12.2017 | Veranstaltungen

Die Stadt der Zukunft nachhaltig(er) gestalten: inter 3 stellt Projekte auf Konferenz vor

15.12.2017 | Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weltrekord: Jülicher Forscher simulieren Quantencomputer mit 46 Qubits

15.12.2017 | Informationstechnologie

Wackelpudding mit Gedächtnis – Verlaufsvorhersage für handelsübliche Lacke

15.12.2017 | Verfahrenstechnologie

Forscher vereinfachen Installation und Programmierung von Robotersystemen

15.12.2017 | Energie und Elektrotechnik