Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bodenbakterien beeinflussen die Luftreinigung

13.09.2013
Bakterien im Erdboden geben gasförmige salpetrige Säure direkt an die Luft ab

Ein internationales Team um Forscher des Max-Planck-Instituts für Chemie in Mainz hat festgestellt, dass Bakterien in der obersten Bodenschicht beträchtliche Mengen Hydrogennitrit, besser bekannt als salpetrige Säure oder HONO, in gasförmiger Form an die Luft abgeben.


Eine starke HONO-Quelle: Aus Proben eines Ackerbodens in Finthen bei Mainz entweicht besonders viel salpetrige Säure, sobald dieser an der Oberfläche austrocknet. Periodische Feuchtigkeitsschwankungen durch Niederschläge kurbeln die bakterielle Produktion des Spurengases, das die Selbstreinigung der Atmosphäre beeinflusst, zusätzlich an.
© Robert Oswald

Das Gas zerfällt bei Licht rasch in Stickstoffmonoxid und Hydroxylradikale. Letztere reinigen die Luft, weil sie diverse Schadstoffe oxidieren und so beseitigen. Die Erkenntnisse des Forscherteams bieten eine Erklärung, warum in der Atmosphäre mehr HONO gemessen wird, als aus den bekannten Quellen zu erwarten wäre.

Bereits vor einiger Zeit wiesen Wissenschaftler des Max-Planck-Instituts für Chemie nach, dass aus Bodenproben HONO, also salpetrige Säure, freigesetzt werden kann. Wie nun eine neue Studie des Mainzer Instituts zeigt, geben Bodenbakterien das Gas auch direkt an die Luft ab und beeinflussen damit die Reinigung der Atmosphäre und den globalen Stickstoffkreislauf.

„Gemeinsam mit Kollegen haben wir vor zwei Jahren herausgefunden, dass das Gas aus Böden entweicht“, erklärt Ivonne Trebs, Gruppenleiterin am Max-Planck-Institut für Chemie. Die Forscher schlussfolgerten damals, dass der Boden umso mehr HONO freisetzt, je mehr Nitrit-Ionen er enthält und je saurer er ist. Unter diesen Bedingungen bildet sich aus dem Nitrit salpetrige Säure, die gasförmig in die Luft gelangen kann. „Dieser einfache chemische Bildungsweg lag zwar nahe, ist aber bis dahin nicht berücksichtigt worden“, so Ivonne Trebs.

Robert Oswald und Michael Ermel, Doktoranden bei Ivonne Trebs, vermuteten bereits damals, dass Bakterien im Boden HONO auch direkt freisetzen können. Mikroben, die sich von Ammoniak ernähren und sich daher vor allem in neutralem bis leicht alkalischem Milieu wohl fühlen, sind zwar schon hinlänglich bekannt. Bisher dachten Mikrobiologen und Geoforscher jedoch, sie würden ihr Futter nur zu Nitrit umsetzen, das sich im Boden löst. Dass sie zudem auch Hydrogennitrit produzieren, das sie direkt an die Luft verströmen könnten, brachten dagegen erst die jungen Mainzer Forscher ins Spiel.

Um ihre Vermutung zu überprüfen, untersuchten die Wissenschaftler im Labor Bodenproben von 17 verschiedenen Ökosystemen. Die meisten Erdproben schickten ihnen befreundete Forschungsgruppen aus aller Welt nach Mainz. „Wir haben zum Beispiel Bodenproben von einem rheinhessischen Acker, aber auch aus einer Steinwüste in China und einem Eukalyptuswald in Australien untersucht“, sagt die Umweltwissenschaftlerin Trebs.

Globale HONO-Emissionen hängen mit NO-Emissionen zusammen

Für jede Bodenprobe bestimmten sie, wie viel HONO und wie viel Stickstoffmonoxid (NO) die Erde ausgast. Dass Bakterien auf unterschiedlichen Wegen NO erzeugen und abgeben, ist bereits bekannt. „Diese Emissionen sind weltweit recht gut erfasst, weil auch NO ein wichtiges Spurengas ist und bei vielen chemischen Reaktionen wie etwa der Ozon-Bildung in der Atmosphäre mitmischt“, erklärt Thomas Behrendt, der am Mainzer Max-Planck-Institut die NO-Emissionen von Böden misst. „Wir haben nun festgestellt, dass neutrale und alkalische Böden etwa genauso viel HONO abgeben wie NO, sodass wir aus den bekannten NO-Emissionen der Bodenbakterien auf ihre direkten HONO-Emissionen schließen können.“

Den entscheidenden Hinweis auf die direkte bakterielle HONO-Bildung brachte aber ein einfaches Experiment: Die Forscher verglichen natürliche Bodenproben mit Proben, in denen die Bakterien abgetötet wurden. Aus den unbehandelten Bodenproben entwich viermal so viel HONO wie aus den sterilisierten Böden. „HONO wird durch Bakterien gebildet, die in der obersten Bodenschicht sitzen und Ammoniak oxidieren“, sagt Michael Ermel. Zur Bestätigung stellte der Chemiker auch eine einfache Art künstlichen Boden aus Glasperlen her und gab Ammoniak-oxidierende Bakterien hinzu. Aus der Probe mit den Bakterien entwich viermal so viel HONO wie aus einer sterilen Vergleichsprobe, der die Forscher eine wässrige Nitrit-Lösung zusetzten.

Genauere Modelle der Atmosphärenchemie werden möglich

Den Messungen an den verschiedenen Bodenproben zufolge tritt am meisten salpetrige Säure aus einem Ackerboden aus, den die Forscher unweit von Mainz einsammelten. „Die Emissionen scheinen dann besonders groß zu sein, wenn die Erde abwechselnd mal feucht und mal trocken ist“, erklärt Robert Oswald. Die feuchten Phasen brauchen die Bakterien offenbar, um besonders aktiv zu werden. Auch unter diesen Bedingungen stellen die Bakterien salpetrige Säure her, die teils als Nitrit im feuchten Boden verbleibt und teils als HONO in die Atmosphäre übergeht. In trockenem Boden geben die Mikroben das Gas hingegen direkt an die Luft ab.

Dass Bodenbakterien salpetrige Säure direkt an die Luft abgeben und somit die Selbstreinigung der Atmosphäre beeinflussen, berücksichtigen Modelle der globalen Atmosphärenchemie bisher nicht. „Unsere Erkenntnisse werden dazu beitragen, die Genauigkeit dieser Modelle zu verbessern“, sagt Ivonne Trebs. So können die Forscher in Zukunft berücksichtigen, dass die bakterielle HONO-Quelle in vielen Regionen anders auf den Klimawandel und die zunehmende Trockenheit reagieren würde, als die bisher bekannten HONO-Emissionen. Künftige Untersuchungen dürften über solche Zusammenhänge noch mehr Klarheit bringen, so Ivonne Trebs: „Mit weiteren Labor- und Feldmessungen werden nun die global abgegebenen Mengen und die Details der HONO-Bildung im Boden bestimmt.“

Ansprechpartner

Dr. Ivonne Trebs
Max-Planck-Institut für Chemie, Mainz
Telefon: +49 6131 305-6401
E-Mail: i.trebs@­mpic.de
Robert Oswald
Max-Planck-Institut für Chemie, Mainz
Telefon: +49 6131 305-6402
E-Mail: robert.oswald@­mpic.de
Originalpublikation
R. Oswald, T. Behrendt, M. Ermel, D. Wu, H. Su, Y. Cheng, C. Breuninger, A. Moravek, E. Mougin, C. Delon, B. Loubet, A. Pommerening-Röser, M. Sörgel, U. Pöschl, T. Hoffmann, M.O. Andreae, F.X. Meixner und I. Trebs
HONO emissions from soil bacteria as a major source of atmospheric reactive nitrogen

Science, 13. September 2013; doi: 10.1126/science.1242266

Dr. Ivonne Trebs | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/7518897/bodenbakterien_hono_salpetrige_saeure

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur
22.06.2017 | Fraunhofer-Gesellschaft

nachricht Ursuppe in Dosen
21.06.2017 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Im Focus: Forscher entschlüsseln erstmals intaktes Virus atomgenau mit Röntgenlaser

Bahnbrechende Untersuchungsmethode beschleunigt Proteinanalyse um ein Vielfaches

Ein internationales Forscherteam hat erstmals mit einem Röntgenlaser die atomgenaue Struktur eines intakten Viruspartikels entschlüsselt. Die verwendete...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

Forschung zu Stressbewältigung wird diskutiert

21.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Individualisierte Faserkomponenten für den Weltmarkt

22.06.2017 | Physik Astronomie

Evolutionsbiologie: Wie die Zellen zu ihren Kraftwerken kamen

22.06.2017 | Biowissenschaften Chemie

Spinflüssigkeiten – zurück zu den Anfängen

22.06.2017 | Physik Astronomie