Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bodenbakterien beeinflussen die Luftreinigung

13.09.2013
Bakterien im Erdboden geben gasförmige salpetrige Säure direkt an die Luft ab

Ein internationales Team um Forscher des Max-Planck-Instituts für Chemie in Mainz hat festgestellt, dass Bakterien in der obersten Bodenschicht beträchtliche Mengen Hydrogennitrit, besser bekannt als salpetrige Säure oder HONO, in gasförmiger Form an die Luft abgeben.


Eine starke HONO-Quelle: Aus Proben eines Ackerbodens in Finthen bei Mainz entweicht besonders viel salpetrige Säure, sobald dieser an der Oberfläche austrocknet. Periodische Feuchtigkeitsschwankungen durch Niederschläge kurbeln die bakterielle Produktion des Spurengases, das die Selbstreinigung der Atmosphäre beeinflusst, zusätzlich an.
© Robert Oswald

Das Gas zerfällt bei Licht rasch in Stickstoffmonoxid und Hydroxylradikale. Letztere reinigen die Luft, weil sie diverse Schadstoffe oxidieren und so beseitigen. Die Erkenntnisse des Forscherteams bieten eine Erklärung, warum in der Atmosphäre mehr HONO gemessen wird, als aus den bekannten Quellen zu erwarten wäre.

Bereits vor einiger Zeit wiesen Wissenschaftler des Max-Planck-Instituts für Chemie nach, dass aus Bodenproben HONO, also salpetrige Säure, freigesetzt werden kann. Wie nun eine neue Studie des Mainzer Instituts zeigt, geben Bodenbakterien das Gas auch direkt an die Luft ab und beeinflussen damit die Reinigung der Atmosphäre und den globalen Stickstoffkreislauf.

„Gemeinsam mit Kollegen haben wir vor zwei Jahren herausgefunden, dass das Gas aus Böden entweicht“, erklärt Ivonne Trebs, Gruppenleiterin am Max-Planck-Institut für Chemie. Die Forscher schlussfolgerten damals, dass der Boden umso mehr HONO freisetzt, je mehr Nitrit-Ionen er enthält und je saurer er ist. Unter diesen Bedingungen bildet sich aus dem Nitrit salpetrige Säure, die gasförmig in die Luft gelangen kann. „Dieser einfache chemische Bildungsweg lag zwar nahe, ist aber bis dahin nicht berücksichtigt worden“, so Ivonne Trebs.

Robert Oswald und Michael Ermel, Doktoranden bei Ivonne Trebs, vermuteten bereits damals, dass Bakterien im Boden HONO auch direkt freisetzen können. Mikroben, die sich von Ammoniak ernähren und sich daher vor allem in neutralem bis leicht alkalischem Milieu wohl fühlen, sind zwar schon hinlänglich bekannt. Bisher dachten Mikrobiologen und Geoforscher jedoch, sie würden ihr Futter nur zu Nitrit umsetzen, das sich im Boden löst. Dass sie zudem auch Hydrogennitrit produzieren, das sie direkt an die Luft verströmen könnten, brachten dagegen erst die jungen Mainzer Forscher ins Spiel.

Um ihre Vermutung zu überprüfen, untersuchten die Wissenschaftler im Labor Bodenproben von 17 verschiedenen Ökosystemen. Die meisten Erdproben schickten ihnen befreundete Forschungsgruppen aus aller Welt nach Mainz. „Wir haben zum Beispiel Bodenproben von einem rheinhessischen Acker, aber auch aus einer Steinwüste in China und einem Eukalyptuswald in Australien untersucht“, sagt die Umweltwissenschaftlerin Trebs.

Globale HONO-Emissionen hängen mit NO-Emissionen zusammen

Für jede Bodenprobe bestimmten sie, wie viel HONO und wie viel Stickstoffmonoxid (NO) die Erde ausgast. Dass Bakterien auf unterschiedlichen Wegen NO erzeugen und abgeben, ist bereits bekannt. „Diese Emissionen sind weltweit recht gut erfasst, weil auch NO ein wichtiges Spurengas ist und bei vielen chemischen Reaktionen wie etwa der Ozon-Bildung in der Atmosphäre mitmischt“, erklärt Thomas Behrendt, der am Mainzer Max-Planck-Institut die NO-Emissionen von Böden misst. „Wir haben nun festgestellt, dass neutrale und alkalische Böden etwa genauso viel HONO abgeben wie NO, sodass wir aus den bekannten NO-Emissionen der Bodenbakterien auf ihre direkten HONO-Emissionen schließen können.“

Den entscheidenden Hinweis auf die direkte bakterielle HONO-Bildung brachte aber ein einfaches Experiment: Die Forscher verglichen natürliche Bodenproben mit Proben, in denen die Bakterien abgetötet wurden. Aus den unbehandelten Bodenproben entwich viermal so viel HONO wie aus den sterilisierten Böden. „HONO wird durch Bakterien gebildet, die in der obersten Bodenschicht sitzen und Ammoniak oxidieren“, sagt Michael Ermel. Zur Bestätigung stellte der Chemiker auch eine einfache Art künstlichen Boden aus Glasperlen her und gab Ammoniak-oxidierende Bakterien hinzu. Aus der Probe mit den Bakterien entwich viermal so viel HONO wie aus einer sterilen Vergleichsprobe, der die Forscher eine wässrige Nitrit-Lösung zusetzten.

Genauere Modelle der Atmosphärenchemie werden möglich

Den Messungen an den verschiedenen Bodenproben zufolge tritt am meisten salpetrige Säure aus einem Ackerboden aus, den die Forscher unweit von Mainz einsammelten. „Die Emissionen scheinen dann besonders groß zu sein, wenn die Erde abwechselnd mal feucht und mal trocken ist“, erklärt Robert Oswald. Die feuchten Phasen brauchen die Bakterien offenbar, um besonders aktiv zu werden. Auch unter diesen Bedingungen stellen die Bakterien salpetrige Säure her, die teils als Nitrit im feuchten Boden verbleibt und teils als HONO in die Atmosphäre übergeht. In trockenem Boden geben die Mikroben das Gas hingegen direkt an die Luft ab.

Dass Bodenbakterien salpetrige Säure direkt an die Luft abgeben und somit die Selbstreinigung der Atmosphäre beeinflussen, berücksichtigen Modelle der globalen Atmosphärenchemie bisher nicht. „Unsere Erkenntnisse werden dazu beitragen, die Genauigkeit dieser Modelle zu verbessern“, sagt Ivonne Trebs. So können die Forscher in Zukunft berücksichtigen, dass die bakterielle HONO-Quelle in vielen Regionen anders auf den Klimawandel und die zunehmende Trockenheit reagieren würde, als die bisher bekannten HONO-Emissionen. Künftige Untersuchungen dürften über solche Zusammenhänge noch mehr Klarheit bringen, so Ivonne Trebs: „Mit weiteren Labor- und Feldmessungen werden nun die global abgegebenen Mengen und die Details der HONO-Bildung im Boden bestimmt.“

Ansprechpartner

Dr. Ivonne Trebs
Max-Planck-Institut für Chemie, Mainz
Telefon: +49 6131 305-6401
E-Mail: i.trebs@­mpic.de
Robert Oswald
Max-Planck-Institut für Chemie, Mainz
Telefon: +49 6131 305-6402
E-Mail: robert.oswald@­mpic.de
Originalpublikation
R. Oswald, T. Behrendt, M. Ermel, D. Wu, H. Su, Y. Cheng, C. Breuninger, A. Moravek, E. Mougin, C. Delon, B. Loubet, A. Pommerening-Röser, M. Sörgel, U. Pöschl, T. Hoffmann, M.O. Andreae, F.X. Meixner und I. Trebs
HONO emissions from soil bacteria as a major source of atmospheric reactive nitrogen

Science, 13. September 2013; doi: 10.1126/science.1242266

Dr. Ivonne Trebs | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/7518897/bodenbakterien_hono_salpetrige_saeure

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Knapp neun Milliarden Tonnen mehr CO2 durch El Niño
19.10.2017 | Max-Planck-Institut für Chemie

nachricht Satelliten erfassen Photosynthese mit hoher Auflösung
13.10.2017 | Max-Planck-Institut für Biogeochemie

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungen

Die jungen forschungsstarken Unis Europas tagen in Ulm - YERUN Tagung in Ulm

19.10.2017 | Veranstaltungen

Bauphysiktagung der TU Kaiserslautern befasst sich mit energieeffizienten Gebäuden

19.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy