Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bodenbakterien beeinflussen die Luftreinigung

13.09.2013
Bakterien im Erdboden geben gasförmige salpetrige Säure direkt an die Luft ab

Ein internationales Team um Forscher des Max-Planck-Instituts für Chemie in Mainz hat festgestellt, dass Bakterien in der obersten Bodenschicht beträchtliche Mengen Hydrogennitrit, besser bekannt als salpetrige Säure oder HONO, in gasförmiger Form an die Luft abgeben.


Eine starke HONO-Quelle: Aus Proben eines Ackerbodens in Finthen bei Mainz entweicht besonders viel salpetrige Säure, sobald dieser an der Oberfläche austrocknet. Periodische Feuchtigkeitsschwankungen durch Niederschläge kurbeln die bakterielle Produktion des Spurengases, das die Selbstreinigung der Atmosphäre beeinflusst, zusätzlich an.
© Robert Oswald

Das Gas zerfällt bei Licht rasch in Stickstoffmonoxid und Hydroxylradikale. Letztere reinigen die Luft, weil sie diverse Schadstoffe oxidieren und so beseitigen. Die Erkenntnisse des Forscherteams bieten eine Erklärung, warum in der Atmosphäre mehr HONO gemessen wird, als aus den bekannten Quellen zu erwarten wäre.

Bereits vor einiger Zeit wiesen Wissenschaftler des Max-Planck-Instituts für Chemie nach, dass aus Bodenproben HONO, also salpetrige Säure, freigesetzt werden kann. Wie nun eine neue Studie des Mainzer Instituts zeigt, geben Bodenbakterien das Gas auch direkt an die Luft ab und beeinflussen damit die Reinigung der Atmosphäre und den globalen Stickstoffkreislauf.

„Gemeinsam mit Kollegen haben wir vor zwei Jahren herausgefunden, dass das Gas aus Böden entweicht“, erklärt Ivonne Trebs, Gruppenleiterin am Max-Planck-Institut für Chemie. Die Forscher schlussfolgerten damals, dass der Boden umso mehr HONO freisetzt, je mehr Nitrit-Ionen er enthält und je saurer er ist. Unter diesen Bedingungen bildet sich aus dem Nitrit salpetrige Säure, die gasförmig in die Luft gelangen kann. „Dieser einfache chemische Bildungsweg lag zwar nahe, ist aber bis dahin nicht berücksichtigt worden“, so Ivonne Trebs.

Robert Oswald und Michael Ermel, Doktoranden bei Ivonne Trebs, vermuteten bereits damals, dass Bakterien im Boden HONO auch direkt freisetzen können. Mikroben, die sich von Ammoniak ernähren und sich daher vor allem in neutralem bis leicht alkalischem Milieu wohl fühlen, sind zwar schon hinlänglich bekannt. Bisher dachten Mikrobiologen und Geoforscher jedoch, sie würden ihr Futter nur zu Nitrit umsetzen, das sich im Boden löst. Dass sie zudem auch Hydrogennitrit produzieren, das sie direkt an die Luft verströmen könnten, brachten dagegen erst die jungen Mainzer Forscher ins Spiel.

Um ihre Vermutung zu überprüfen, untersuchten die Wissenschaftler im Labor Bodenproben von 17 verschiedenen Ökosystemen. Die meisten Erdproben schickten ihnen befreundete Forschungsgruppen aus aller Welt nach Mainz. „Wir haben zum Beispiel Bodenproben von einem rheinhessischen Acker, aber auch aus einer Steinwüste in China und einem Eukalyptuswald in Australien untersucht“, sagt die Umweltwissenschaftlerin Trebs.

Globale HONO-Emissionen hängen mit NO-Emissionen zusammen

Für jede Bodenprobe bestimmten sie, wie viel HONO und wie viel Stickstoffmonoxid (NO) die Erde ausgast. Dass Bakterien auf unterschiedlichen Wegen NO erzeugen und abgeben, ist bereits bekannt. „Diese Emissionen sind weltweit recht gut erfasst, weil auch NO ein wichtiges Spurengas ist und bei vielen chemischen Reaktionen wie etwa der Ozon-Bildung in der Atmosphäre mitmischt“, erklärt Thomas Behrendt, der am Mainzer Max-Planck-Institut die NO-Emissionen von Böden misst. „Wir haben nun festgestellt, dass neutrale und alkalische Böden etwa genauso viel HONO abgeben wie NO, sodass wir aus den bekannten NO-Emissionen der Bodenbakterien auf ihre direkten HONO-Emissionen schließen können.“

Den entscheidenden Hinweis auf die direkte bakterielle HONO-Bildung brachte aber ein einfaches Experiment: Die Forscher verglichen natürliche Bodenproben mit Proben, in denen die Bakterien abgetötet wurden. Aus den unbehandelten Bodenproben entwich viermal so viel HONO wie aus den sterilisierten Böden. „HONO wird durch Bakterien gebildet, die in der obersten Bodenschicht sitzen und Ammoniak oxidieren“, sagt Michael Ermel. Zur Bestätigung stellte der Chemiker auch eine einfache Art künstlichen Boden aus Glasperlen her und gab Ammoniak-oxidierende Bakterien hinzu. Aus der Probe mit den Bakterien entwich viermal so viel HONO wie aus einer sterilen Vergleichsprobe, der die Forscher eine wässrige Nitrit-Lösung zusetzten.

Genauere Modelle der Atmosphärenchemie werden möglich

Den Messungen an den verschiedenen Bodenproben zufolge tritt am meisten salpetrige Säure aus einem Ackerboden aus, den die Forscher unweit von Mainz einsammelten. „Die Emissionen scheinen dann besonders groß zu sein, wenn die Erde abwechselnd mal feucht und mal trocken ist“, erklärt Robert Oswald. Die feuchten Phasen brauchen die Bakterien offenbar, um besonders aktiv zu werden. Auch unter diesen Bedingungen stellen die Bakterien salpetrige Säure her, die teils als Nitrit im feuchten Boden verbleibt und teils als HONO in die Atmosphäre übergeht. In trockenem Boden geben die Mikroben das Gas hingegen direkt an die Luft ab.

Dass Bodenbakterien salpetrige Säure direkt an die Luft abgeben und somit die Selbstreinigung der Atmosphäre beeinflussen, berücksichtigen Modelle der globalen Atmosphärenchemie bisher nicht. „Unsere Erkenntnisse werden dazu beitragen, die Genauigkeit dieser Modelle zu verbessern“, sagt Ivonne Trebs. So können die Forscher in Zukunft berücksichtigen, dass die bakterielle HONO-Quelle in vielen Regionen anders auf den Klimawandel und die zunehmende Trockenheit reagieren würde, als die bisher bekannten HONO-Emissionen. Künftige Untersuchungen dürften über solche Zusammenhänge noch mehr Klarheit bringen, so Ivonne Trebs: „Mit weiteren Labor- und Feldmessungen werden nun die global abgegebenen Mengen und die Details der HONO-Bildung im Boden bestimmt.“

Ansprechpartner

Dr. Ivonne Trebs
Max-Planck-Institut für Chemie, Mainz
Telefon: +49 6131 305-6401
E-Mail: i.trebs@­mpic.de
Robert Oswald
Max-Planck-Institut für Chemie, Mainz
Telefon: +49 6131 305-6402
E-Mail: robert.oswald@­mpic.de
Originalpublikation
R. Oswald, T. Behrendt, M. Ermel, D. Wu, H. Su, Y. Cheng, C. Breuninger, A. Moravek, E. Mougin, C. Delon, B. Loubet, A. Pommerening-Röser, M. Sörgel, U. Pöschl, T. Hoffmann, M.O. Andreae, F.X. Meixner und I. Trebs
HONO emissions from soil bacteria as a major source of atmospheric reactive nitrogen

Science, 13. September 2013; doi: 10.1126/science.1242266

Dr. Ivonne Trebs | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/7518897/bodenbakterien_hono_salpetrige_saeure

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen
18.08.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Klimawandel: Bäume binden im Alter große Mengen Kohlenstoff
17.08.2017 | Universität Hamburg

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie