Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bleichmittel in der isländischen Vulkanwolke

27.05.2011
Chlor in der Aschewolke des isländischen Vulkans Eyjafjallajökull entfernt Spurengase aus der Atmosphäre

Gut ein Jahr nachdem der isländische Vulkan Eyjafjallajökull fast den ganzen europäischen Flugverkehr lahmlegte, sorgt seine Aschewolke für eine interessante Entdeckung: Forscher des Max-Planck-Instituts für Chemie haben festgestellt, dass die Aschewolke des Vulkans neben dem bekannten Vulkangas Schwefeldioxid auch freie Chlorradikale enthielt. Chlorradikale sind äußerst reaktiv und verändern schon in kleinsten Mengen die chemischen Prozesse in der Atmosphäre. Mit Hilfe von Luftproben aus der Vulkanwolke konnte nun erstmals die Konzentration der Chlorradikale in der Aschewolke errechnet werden. Die Ergebnisse wurden jetzt im Journal „Geophysical Research Letters“ veröffentlicht.

Obwohl seit Jahren bekannt ist, dass Vulkanausbrüche große Mengen an Chlorverbindungen freisetzen, blieb der Beweis für die Bildung von höchstreaktiven Chlor-Radikalen aber aus. Das änderte sich, nachdem Forscher Luftproben, die auf Flügen durch die Aschewolke des Vulkans Eyjafjallajökull gesammelt wurden, analysierten. Im letzten Frühjahr war der Mainzer Messcontainer CARIBIC bei drei Sonderflügen der Lufthansa mit an Bord und nahm Luftproben in der Vulkanwolke. Zurück in Mainz wurde die Luft dann unter anderem auf ihren Gehalt an Kohlenwasserstoffen untersucht.

„Jeder Vulkan hat seinen eigenen Charakter“, sagt Angela Baker, Erstautorin der jetzigen Studie. „Beim Eyjafjallajökull haben wir bis zu 70% weniger Kohlenwasserstoffe in der Wolke gefunden als außerhalb. Wissenschaftlich lässt sich das nur dadurch erklären, dass die Kohlenwasserstoffe sofort mit freien Chlorradikalen reagieren, was wir durch weitere Untersuchungen auch bestätigen konnten.“ Die Wissenschaftlerin errechnete hieraus eine Konzentration von bis zu 66.000 Chloratomen pro Kubikzentimeter Luft. Im Vergleich zu anderen Gasen ist diese Menge zwar gering, sie reicht aber aus, um die chemischen Prozesse der Atmosphäre deutlich zu beeinflussen. Denn unter normalen Bedingungen kommen diese höchstreaktiven Chloratome überhaupt nicht vor.

Kohlenwasserstoffe wie zum Beispiel Propan und Butan findet man sogar in sehr reinen und weit entfernten Regionen der unteren Erdatmosphäre. Normalerweise werden diese Gase jedoch nach und nach durch Hydroxylradikale abgebaut. Chlor hingegen baut die Kohlenwasserstoffe chemisch um ein Vielfaches schneller ab. Damit hinterlassen die chemischen Reaktionen mit Chlor einen charakteristischen „Fingerabdruck“ in der Luft, aus dem man die Konzentration der Chlorradikale ableiten kann. Die Max-Planck-Forscher rechnen damit, dass man zu ähnlichen Messergebnissen auch bei anderen Vulkanausbrüchen kommt, wie bei dem vor kurzem aktiven isländischen Vulkan Grimsvötn. Außerdem erwarten sie, dass sich ihre Analysemethode zum chemischen Verhalten der Chlorradikale weltweit durchsetzt.

Über den Messcontainer CARIBIC
CARIBIC ist ein einzigartiges Projekt, welches mittels eines Messcontainers weltweit hochgenaue, ausführliche Messungen in der Atmosphäre vornimmt. An dem in Deutschland entwickelten Projekt sind zehn Partner aus fünf europäischen Ländern beteiligt. Koordinator ist das Max-Planck-Institut für Chemie in Mainz. Das fliegende Labor reist einmal pro Monat auf vier Langstreckenflügen im Frachtraum des A340-600 „Leverkusen“ der Lufthansa mit.

Ein speziell angefertigtes Einlass-System am Flugzeugbauch leitet während des gesamten Fluges Luft- und Teilchenproben an die Instrumente im Inneren des Containers weiter. Der Container flog im Rahmen von drei Sonderflügen durch die Eyjafjalljökull-Aschewolke mit, die beim Ausbruch des isländischen Vulkans im April und Mai 2010 entstand.

Die Geräte im Container messen über 50 Spurengase, wie Treibhausgase, FCKWs, Wasserdampf und Schwebeteilchen in der Atmosphäre. Die detaillierten Daten helfen herauszufinden, wo die Quellen von Verunreinigungen liegen, wie Luftverschmutzung transportiert wird, und wie sich die Atmosphäre selbst reinigt. So ergibt sich durch Nutzung von Verkehrsflugzeugen zu vergleichsweise geringen Kosten auf Dauer ein genaues Abbild der Atmosphäre und der in ihr ablaufenden Prozesse. Gefördert wird das Projekt u.a. von der Lufthansa und seit 2009 auch von der Fraport AG in Frankfurt.

Weitere Informationen zum Messcontainer unter http://www.caribic.de

Über das Max-Planck-Institut für Chemie
Am Max-Planck-Institut für Chemie (260 Mitarbeiter) werden die Erde und ihre Atmosphäre in unterschiedlichen Größenbereichen, vom Nanopartikel bis zum Planeten und von der Ökosystemdynamik bis zum globalen Klimawandel erforscht. Drei Abteilungen untersuchen das Erdsystem in Feldstudien, unter Laborbedingungen und mit Hilfe von computergestützten Modellsystemen. Somit trägt das Institut zum grundlegenden Verständnis der natürlichen Ressourcen der Erde bei und liefert notwendige Methoden für deren nachhaltige Nutzung und den Schutz der Umwelt. Mit einer International Research School und einem E-Learning Programm beteiligt sich das Institut auch aktiv an der Wissenschafts¬ausbildung. Das Max-Planck-Institut für Chemie beteiligt sich aktiv am Veranstaltungsprogramm 2011 zur Stadt der Wissenschaft in Mainz. Im nächsten Jahr feiert das Institut sein 100-jähriges Bestehen.

Weitere Informationen: http://www.mpic.de

Originalveröffentlichung:
Angela K. Baker, Armin Rauthe-Schöch, Tanja J. Schuck, Carl A. M. Brenninkmeijer, Peter F. J. van Velthoven, Adam Wisher, David E. Oram
Investigation of chlorine radical chemistry in the Eyjafjallajökull volcanic plume using observed depletions in non-methane hydrocarbons

Geophysical Research Letters, in press, 2011

Kontakt:
Dr. Angela K. Baker
Max-Planck-Institut für Chemie, Mainz
Tel.: +49 6131-305 416
E-Mail: angela.baker@mpic.de
Dr. Carl A. M. Brenninkmeijer
Max-Planck-Institut für Chemie, Mainz
Tel.: +49 6131-305 305
E-Mail: carl.brenninkmeijer@mpic.de

Dr. Wolfgang Huisl | idw
Weitere Informationen:
http://www.caribic.de
http://www.mpic.de

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen
18.08.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Klimawandel: Bäume binden im Alter große Mengen Kohlenstoff
17.08.2017 | Universität Hamburg

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie